The `usbdev_synopsys_dwc2 driver` requires the `ztimer_msec` module and is therefore responsible for pulling it in. Therefore, the dependency on `ztimer_msec` can be removed here.
`thread_stack_init()` didn't correctly set up the stack alignment.
This fixes the issue and brings the function closer to the Cortex M
version, laying the groundwork for future code duplication.
This fixes https://github.com/RIOT-OS/RIOT/issues/11885
There are two schemes for accessing the packet buffer area (PMA) from the CPU:
- 2 x 16 bit/word access scheme where two 16-bit half-words per word can be accessed. With this scheme the access can be half-word aligned and the PMA address offset corresponds therefore to the local USB IP address. The size of the PMA SRAM is usually 1024 byte.
- 1 x 16 bit/word access scheme where one 16-bit half word per word can be accessed. With this scheme the access can only be word-aligned and the PMA address offset to a half-word is therefore twice the local USB IP address. The size of the PMA SRAM is usually 512 byte.
Which access scheme is used depends on the STM32 model.
The addressing of the Packet buffer Memory Area (PMA) is done locally in the USB IP core in half-words with 16-bit. The `_ep_in_buf` and `_ep_out_buf` arrays which hold these USB IP local addresses in the PMA for initialized EPs therefore always use `uint16_t`.
If the MCU does not have an internal D+ pullup and there is no dedicated GPIO to simulate a USB disconnect, the D+ GPIO is temporarily configured as an output and pushed down to simulate a disconnect/connect cycle to allow the host to recognize the device. However, this requires an external pullup on D+ signal to work
If `RCC_CFGR_USBPRE` is defined, the USB device FS clock of 48 MHz is derived from the PLL clock. In this case the PLL clock must be configured and must be either 48 MHz or 72 MHz. If the PLL clock is 72 MHz it is pre-divided by 1.5, the PLL clock of 48 MHz is used directly.
The definition in `pkg/esp32_sdk/Makefile.include` was evaluated by
`make` after the include paths were already set, resulting in
`ESP32_SDK_DIR` being empty in
INCLUDES += -I$(ESP32_SDK_DIR)/components
[...]
This in turn resulted in
cc1: error: /components: No such file or directory [-Werror=missing-include-dirs]
[...]
The parameters for parity and stop bits was confused, resulting in
the following compilation error with GCC 12.2.0:
/home/maribu/Repos/software/RIOT/cpu/esp_common/periph/uart.c: In function '_uart_config':
/home/maribu/Repos/software/RIOT/cpu/esp_common/periph/uart.c:394:61: error: implicit conversion from 'uart_stop_bits_t' to 'uart_parity_t' -Werror=enum-conversion]
394 | if (_uart_set_mode(uart, _uarts[uart].data, _uarts[uart].stop,
| ~~~~~~~~~~~~^~~~~
/home/maribu/Repos/software/RIOT/cpu/esp_common/periph/uart.c:395:42: error: implicit conversion from 'uart_parity_t' to 'uart_stop_bits_t' -Werror=enum-conversion]
395 | _uarts[uart].parity) != UART_OK) {
| ~~~~~~~~~~~~^~~~~~~
cc1: all warnings being treated as errors
This swaps the parameters.
For a number of STM32 MCUs with the USB-FS device interface the signals USB_DP and USB_DM are not defined as GPIO alternative function but as additional function. Additional functions are directly selected/enabled through peripheral registers hand have not to be configured. In this case, the configuration defines GIO_AF_UNDEF as alternative function.
This file is an excerpt of STM32 header file `stm32/smsis/f7/include/stm32f767xx.h` since the ESP32x SoCs use the same Synopsys DWC2 IP core as USB peripherals.
Since `esp_can.h` is included by main `cpu/esp32/include/periph_cpu.h` after the include of the specific `periph_cpu_$(CPU_FAM)`, it is not necessary to include `esp_can.h` in each specific `periph_cpu_$(CPU_FAM)`.
Makefiles don't do comments, so these were forwarded into the variable.
*Most* users would expand the arguments to a shell where it'd be
ignored, but not all of them.
Contributes-To: https://github.com/RIOT-OS/RIOT/pull/18489
(This is also where the one version that is added here was removed).
Due to the lack of new official avr-libc releases (which includes the
vendor header files needed to support different version of MCUs),
support for new MCUs was lacking. Distributions such as Debian addressed
this by extending the upstream code with vendor header files directly
obtained from Atmel / Microchip, but without paying attention to
details. As such, a naming inconsistency (ASIZE vs ASPACE) between
officially supported MCUs and new MCUs was introduced.
Now that avr-libc 2.1.0 is officially released, hardware support for new
MCUs is provided by upstream out of the box and only ASIZE is used as
name. This commit adds a bit of glue code to create aliases for ASIZE on
older avr-libc versions where needed. This fixes compilation with the
new avr-libc release and results in more consistent code.
- most were trivial
- missing group close or open
- extra space
- no doxygen comment
- name commad might open an implicit group
this hould also be implicit cosed but does not happen somtimes
- crazy: internal declared groups have to be closed internal
Add tracing support via GPIOs to trace the basic state of the Ethernet
peripheral. The following signals are provided:
- One GPIO pin is toggled on entry of the Ethernet ISR
- On TX start an GPIO is set, on TX completion it is cleared
- On RX complete an GPIO is set, once this is passed to the upper layer
the GPIO is cleared again
In order to reduce the overhead, GPIO LL is used. By default the
on-board LEDs are used as tracing GPIOs. This makes it easy to debug
when the state machine gets stuck without the need to attach a scope or
logic analyzer.
If module `core_mutex_priority_inheritance` is enabled, the scheduling has to be active to lock/unlock the mutex/rmutex used by FreeRTOS semaphores. If scheduling is not active FreeRTOS semaphore function always succeed.
For ESP32x, the operations on recursive locking variables have to be guarded by disabling interrupts to prevent unintended context switches. For ESP8266, interrupts must not be disabled, otherwise the intended context switch doesn't work when trying to lock a rmutex that is already locked by another thread.
Dynamic allocation and initialization of the mutex used by a newlib locking variable must not be interrupted. Since a thread context switch can occur on exit from an ISR, the allocation and initialization of the mutex must be guarded by disabling interrupts. The same must be done for the release of such a locking variable.
With the improvements of the locking mechanism, thread safety of malloc/realloc/calloc/free is guaranteed. Module malloc_thread_safe is not needed any longer.
When FreeRTOS semaphores, as required by ESP-IDF, are used together with `gnrc_netif`, RIOT may crash if `STATUS_RECEIVE_BLOCKED` is used as a blocking mechanism in the FreeRTOS adaptation layer. The reason for this is that `gnrc_netif` uses thread flags since PR #16748. If the `gnrc_netif` thread is blocked because of a FreeRTOS semaphore, and is thus in `STATUS_RECEIVE_BLOCKED` state, the `_msg_send` function will cause a crash because it then assumes that `target->wait_data` contains a pointer to a message of type `msg_t`, but by using thread flags it contains the flag mask. This situation can happen if the ESP hardware is used while another thread is sending something timer controlled to the `gnrc_netif` thread.
To solve this problem `STATUS_MUTEX_LOCKED` is used instead of `STATUS_RECEIVE_BLOCKED` and `STATUS_SEND_BLOCKED`
To reduce the required RAM in default configuration, the BLE interface is used as netdev_default instead of ESP-NOW. Further network interfaces can be enabled with the modules `esp_now`, `esp_wifi` or `esp_eth`.
When using Bluetooth LE, the former UART interrupt number 5 is occupied by the ESP32 Bluetooth Controller. Therefore, another interrupt number has to be used for UART.
The package uses the nRFx SDK package `nrfx`. In addition, the `mynewt-nimble` repository contains some files (`porting/nimble/src/hal_timer.c` and `porting/npl/riot/src/nrf5x_isr.c`) that are compilable only for nRF MCUs. To allow the compilation for other platforms, the use of the `nrfx` package and the compilation of these files are now dependent on the use of any nRF5x MCU.
This define does not belong to the defines in `sdkconfig_*.h` that are used for the ESP-IDF SDK. It is therefore moved to the corresponding `periph_cpu_*.h` file.
A if `netdev_driver_t::confirm_send()` is provided, it provides the
new netdev API. However, detecting the API at runtime and handling
both API styles comes at a cost. This can be optimized in case only
new or only old style netdevs are in use.
To do so, this adds the pseudo modules `netdev_legacy_api` and
`netdev_new_api`. As right now no netdev actually implements the new
API, all netdevs pull in `netdev_legacy_api`. If `netdev_legacy_api` is
in used but `netdev_new_api` is not, we can safely assume at compile
time that only legacy netdevs are in use. Similar, if only
`netdev_new_api` is used, only support for the new API is needed. Only
when both are in use, run time checks are needed.
This provides two helper function to check for a netif if the
corresponding netdev implements the old or the new API. (With one
being the inverse of the other.) They are suitable for constant folding
when only new or only legacy devices are in use. Consequently, dead
branches should be eliminated by the optimizer.
These BLE_* features are not necessarily nRF5x specific and should be defined as common features. The commit also fixes the alphabetical order for HAS_RUST_TARGET.
A single character type resulted in way fewer TX descriptors being
available than allocated. Not only resulted this in wasting memory,
but also when more iolist chunks than descriptors are send, the
```C
assert(iolist_count(iolist) <= ETH_TX_DESCRIPTOR_COUNT);
```
does not trigger. As a result, old TX descriptors are being overwritten
in this case.
Add the linker script for ESP32-S3 and modify the ESP32-C3 linker scripts to be compatible with them. The goal is to use a section list of objects that is common for all ESP32x SoCs in future.
In fact the ESP32 has no peripheral driver for the ETH interface. Instead, the `esp_eth` netdev driver directly uses the ESP-IDF Ethernet API. This caused compilation problems with Kconfig. Therefore the required feature `periph_eth` is replaced by the feature `esp_eth`.
In fact the ESP32 has no peripheral driver for the ETH interface. Instead, the `esp_eth` netdev driver directly uses the ESP-IDF Ethernet API. This caused compilation problems with Kconfig. Therefore the required feature `periph_eth` is replaced by the feature `esp_eth`.
This commit includes the following changes:
- the default flash mode in bootloader should be dio and not dout
- the default flash configuration for ESP32 has to be exported to be also visible in cpu/esp32/bootloader/Makefile
- the comments in cpu/esp8266/Makefile.include have to be removed so that the flash configuration do not contain trailing white spaces
The former FLASH_MODE_{DOUT,DIO,QOUT,QIO} defines are replaced by the corresponding CONFIG_FLASHMODE_{DOUT,DIO,QOUT,QIO} and CONFIG_ESPTOOLPY_FLASHMODE_{DOUT,DIO,QOUT,QIO} as used by the ESP-IDF. This is also needed for the migration of defining flash mode in Kconfig.