GPIO32 and GPIO33 are used during boot to start an 32.768 kHz XTAL if it is connected to these GPIOs. If the 32.768 kHz XTAL is not connected, these pins can be used digital IO. However, the 32.678 kHz XTAL has to be disabled explicitly in this case. Furthermore, the handling of GPIOs greater than GPIO31 had to be fixed in I2C software implementation.
The calculation of `_state_index` is broken for `port = 2`
_gpio_isr_map[n + (port<<1)];
Will not yield the right result. As a consequence, IRQs on Port 2
are not working.
The right thing here would be
_gpio_isr_map[n + (port ? 32 : 0)];
But we might just re-using the `_isr_map_entry()` function.
Also only iterate as many times as there are set interrupt bits.
The ARM CortexM vector table has some reserved fields which are used by
some manufacturers to store their custom image information. In
particular, NXP QN908X stores the checksum, Code Read Protection, image
type and boot block pointer in this region.
This patch allows the cpu and board modules to define the value of these
fields at build time by defining a macro.
GCLK_ID and APBCMASK entries are not always uniform.
The previous hack would already break for TCC3.
Just explosively write down the cases, there are only 5 at most.
The CPU has 4 hardware timers.
Configuration for all 4 timers exists, but the compile-time range
check has an off-by-one error, causing the last timer to remain
inaccessible.
This commit enables Cortex-M CPU interrupt sub-priorities
and allows the PendSV interrupt to have a priority different
from the default one. Together these two preprocessor
defines can be used to have PendSV always run as the last interrupt
before returning from the interrupt stack back to the user space.
Running PendSV as the last interrupt before returning to the
user space is recommended by ARM, as it increases efficiency.
Furthermore, that change enhances stability a lot with the
new nRF52 SoftDevice support, currently being worked in
PR #9473.
This commit merely enables sub-priorities and a separate
PendSV priority to be used without changing the default
RIOT behaviour.
The DFLL on samd5x has a hardware bug that requires a special
re-enabling sequence when it is disabled and then re-enabled again.
When running the clock on-demand, the hardware handles the disabling
and re-enabling so that sequence does not get executed.
To reproduce, run `tests/periph_uart` on `same54-xpro`.
Without this patch the test will get seemingly stuck on `sleep_test()`.
(In fact it keeps running, but the DFLL has the wrong frequency so the
UART baudrate is wrong).
In this test, on `same54-xpro` only UART0 is sourced from DFLL.
So if the UART is disabled the DFLL will be turned off as well.
Switch from the on-chip LDO to the on-chip buck voltage regulator
when not fast internal oscillators are used.
On `saml21-xpro` with `examples/default` this gives
**before:** 750 µA
** after:** 385 µA
Also adapt the defines to the documentation
- CPUs define up to 4 power modes (from zero, the lowest power mode,
to PM_NUM_MODES-1, the highest)
- >> there is an implicit extra idle mode (which has the number PM_NUM_MODES) <<
Previously on saml21 this would always generate pm_set(3) which is an illegal state.
Now pm_layered will correctly generate pm_set(2) for IDLE modes.
Idle power consumption dropped from 750µA to 368µA and wake-up from standby is also
possible. (Before it would just enter STANDBY again as the mode register was never
written with the illegal value.)
When a previously disabled DFLL gets enabled again, the frequency will
be incorrect. Follow the procedure outlined in the errata sheet, section 2.8.3
to work around the issue.
This fixes wake from standby.
This adds cortexm_fpu to the DEFAULT_MODULE list when the feature
cortexm_fpu is provided by the architecture. It also moves the
dependency resolution of this module to the architecture-specific
Makefile.dep file.
This moves the following modules to a architecture-specific Makefile.dep
file:
- cortexm_common
- cortexm_common_periph
- newlib
- newlib_nano
- periph
Add a fucntion to switch between LDO and Buck concerter to provide the
internal CPU voltage.
The Buck Converter is not compatible with internal fast oscillators (DFLL, DPLL)
and requires an inductivity to be present on the board.
When changing the clock configuration while the RTC is running, the
RTC may end up in an undefined state that leaves it unresponsive.
The RTC is not reset to stay persistent across reboots/hibernate, so
it will not be reset on init.
Instead, disable the RTC while configuring the clocks, rtc_init() will
take care of re-enabling it.
@dylad introduced this workaround for saml21, samd5x needs it too.
To reproduce, set the CLOCK_CORECLOCK of a samd5x board (e.g. same54-xpro)
to 48 MHz.
Run any RTC application. The CPU will be stuck in _wait_syncbusy() after
a reboot.
This patch will fix this. (You will need to power-cycle the board if the
RTC has entered the stuck state as it will never be reset.)
Due to stability reasons, the SoftAP interface of the WiFi module was always enabled in former versions even if only the station interface was used. Therefore the WiFi modem had to be always active and the SoC could not enter the modem sleep mode. Therefore, the SoftAP interface is only enabled when ESP-NOW is used.
When entering a sleep mode, all wake-up sources should first be disabled before the wake-up sources required for the sleep mode are then stepwise enabled again. Otherwise, an wake-up configuration of one sleep mode may affect the wake-up within another sleep mode.
This file used to be part of the toolchain (at least in 2016.05-03
version) but is not part of the current MIPS toolchain (2018-09-03).
Signed-off-by: Francois Berder <18538310+francois-berder@users.noreply.github.com>
The ROM size is encoded in the part number of the Atmel SAM chips.
RAM size is not encoded directly, so get it by parsing the chip's vendor file.
The file remains in the page cache for the compiler to use, so the overhead
should be minimal:
on master:
Benchmark #1: make BOARD=samr21-xpro -j
Time (mean ± σ): 527.9 ms ± 4.9 ms [User: 503.1 ms, System: 69.6 ms]
Range (min … max): 519.7 ms … 537.2 ms 10 runs
with this patch:
Benchmark #1: make BOARD=samr21-xpro -j
Time (mean ± σ): 535.6 ms ± 4.0 ms [User: 507.6 ms, System: 75.1 ms]
Range (min … max): 530.6 ms … 542.0 ms 10 runs
- Since flash access is shared with CPU2 we resize ROM_LEN
according to CPU2 secure flash memmory area.
- Add assert to prevent unauthorized reads from CPU2 secure
flash area
The WiFi interface should be stopped before reboot or sleep. But stopping the WiFi interface disconnects an existing connection. Usually, esp_wifi_netdev tries to reconnect on an disconnect event. However, trying reconnect with a stopped WiFi interface may lead to a crash. Therefore, the stop event has to be handled.
Now, where the vendor files for light/deep sleep mode are added, function `pm_off` does not need to implement this mode by itself. Instead the existing deep sleep with disabled wakeup sources is used for pm_off.
If only one it is set in state (one GPIO pin caused an interrupt),
don't loop over all 8 bits.
Use clz to get the position of the first interrupt bit and clear it,
looping only as many times as there are actual interrupts.
`rtc_init` is used after light sleep to update the system time from RTC timer. The fix corrects a small difference of about 230 ms which would sum up with each wakeup from light sleep.
This definition is compatible with `cc26x0` and `cc26x2_cc13x2`.
The only difference is (cc26x0 -> cc26x2_cc13x2):
- IRQ13 -> FG_COMMAND_STARTED
- IRQ12 -> COMMAND_STARTED
Those IRQs aren't used on cc26x0 radio so it shouldn't affect anything.
From the ARMv7-M ARM section B3.5.3:
Where there is an overlap between two regions, the register with
the highest region number takes priority.
We want to make sure the mpu_noexec_ram region has the lowest
priority to allow the mpu_stack_guard region to overwrite the first N
bytes of it.
This change fixes using mpu_noexec_ram and mpu_stack_guard together.
cc2538 implements 4 sleep modes.
In the lightest mode (3) any interrupt source can wake up the CPU.
In mode 2, only RTT, GPIO or USB may wake the CPU.
In mode 1 only RTT and GPIO can wake the CPU.
In mode 0 only GPIO can wake the CPU.
In mode 0 and 1 the lower 16k RAM are lost. This is a problem since those
are usually used by RIOT.
The linkerscripts in cc2538/ldscripts take different approaches towards that.
Some only use the upper 16k and leave the other half to be managed by the
application.
`cc2538sf53.ld` which is used by `openmote-b` uses the entire RAM starting
at the lower half, so it will not be able to wake up from those modes.
A quick fix to test those modes with `tests/periph_pm` would be
--- a/cpu/cc2538/ldscripts/cc2538sf53.ld
+++ b/cpu/cc2538/ldscripts/cc2538sf53.ld
@@ -21,7 +21,7 @@ MEMORY
{
rom (rx) : ORIGIN = 0x00200000, LENGTH = 512K - 44
cca : ORIGIN = 0x0027ffd4, LENGTH = 44
- ram (w!rx) : ORIGIN = 0x20000000, LENGTH = 32K
+ ram (w!rx) : ORIGIN = 0x20004000, LENGTH = 16K
}
We have to read the DR for every byte that we write.
Just reading DR while SPI is busy in a loop can lead to bytes being
left in the fifo, corrupting subsequent reads.
- cpu/stm32f1: Removed previous code in gpio_init() to provide PB4 on the
Nucleo-F103RB only
- cpu/stm32_common: Introduced STM32F1_DISABLE_JTAG which, if defined in
board.h, exposes the JTAG only pins as GPIOs. This keeps the SWD pins, so that
SWD debugging remains possible
The internal DC/DC converter is more efficient compared to the LDO
regulator. The downside of the DC/DC converter is that it requires an
external inductor to be present on the board. Enabling the DC/DC
converter is guarded with NRF5X_ENABLE_DCDC, this macro must be defined
if the DC/DC converter is to be enabled.
This implements a basic Real Time Clock based on TIM2.
As the timer is too fast and wraps around after just 8 bits, it is
not used directly. Instead TIM2 is responsible for providing a 1 Hz
tick by generating an alarm every second.
The current time data is kept in the `.noinit` section, so it will survive
a reboot, but the clock will not be updated while the bootloader runs, so
expect inaccuracies.
By using a custom EPOCH for the RTC implementation, we can extend the
range of the 32 bit counter based RTC by 118 years.
It also reduces the code size compared to the stdlib based POSIX functions.
To be able to define common configurations for all ESP CPUs, the CPU specific configuration cpu_conf.h has to include a common configuration. For that purpose cpu_conf.h in cpu/esp_common is renamed to cpu_conf_common.h and included in CPU specific configurations.
The split between GEN2_ULP32K and GEN3_ULP32K was introduced to fix
a failure in tests/periph_wdt when the external oscillator was used.
By not running the external oscillator on demand, the failure can no
longer be observed, so default GEN3_ULP32K to GEN2_ULP32K.
The lpc23xx MCU has up to three I2C interfaces.
This adds a driver for it.
The peripheral works in interrupt mode, each change of the state machine
will generate an interrupt.
The response to the states are laid out in the data sheet.
This replaces the old driver that was removed in c560e28eb6
All the more recent vendor files have them, so include them for samr30 too.
It is expected for this to become obsolete with the next vendor file update.
During the write access to the SPI flash, the IROM cache is not available and only code from the IRAM can be executed. Therefore, the code of file system implementations which access the SPI flash must reside in IRAM.
For consistency, use named GCLKs.
- `SAM0_GCLK_32KHZ` will always be 2 for samd21
- `SAM0_GCLK_MAIN` will always be 0
So no change in functionality, just makes the code easier to understand.
The same tool 'gen_esp32part.py' is used for the generation of partition tables on ESP8266 as well as n ESP32. The tool is therefore added to 'dist/tools/esptool'
Creating an `exti_config` array for a new MCU manually is tedious and error prone.
Luckiely all information is already availiable in the vendor files.
Credit for this discovery & method goes to @Sizurka
The file was generated with
```C
int main(void) {
puts("static const int8_t exti_config[PORT_GROUPS][32] = {");
for (unsigned port = 1; port < 5; ++port) {
printf("#if PORT_GROUPS >= %d\n{\n", port);
for (unsigned pin = 0; pin < 32; ++pin) {
printf("#ifdef PIN_P%c%02uA_EIC_EXTINT_NUM\n", '@' + port, pin);
printf(" PIN_P%c%02uA_EIC_EXTINT_NUM,\n", '@' + port, pin);
printf("#else\n -1,\n#endif\n");
}
printf("},\n#endif\n\n");
}
puts("};");
return 0;
}
```
No changes in generated code are expected, but this makes adding new members
of the sam0 CPU families much easier.
Set the ONDEMAND bit so clocks are only run if they have a user configured.
This saves 390 µA on same54-xpro.
examples/default:
before: 3.88 mA
after : 3.49 mA
examples/gnrc_networking: (with REB215-XPRO EXT3)
before: 13.29 mA
after : 12.9 mA
samr30 is the only MCU of this family where the vendor files do not
define the PIN_($pin)_EIC_EXTINT_NUM macro yet.
This macro is needed to create a generic EXTI configuration for all
sam0 MCUs.
The defines were generated with
sed -Ei '/define PIN_(.*)_EIC_EXTINT([0-9]*)/
{h; x;
s/define PIN_(.*)A_EIC_EXTINT([0-9]*)(.*)/
define PIN_\1A_EIC_EXTINT_NUM _L_\(\2\)
\/**< \brief EIC signal: PIN_\1 External Interrupt Line *\/
/g; G}' samr30g18a.h samr30e18a.h