- All nRF52 timers support 32 bit mode, so use that
- All nRF52 timers support at least 4 channels, the timers NRF_TIMER3
and NRF_TIMER4 even support 6 channels.
- Add a warning that `TIMER_DEV(1)` is used by the IEEE 802.15.4 driver
The peripheral configuration has been completely reworked to resolve
pin conflicts while provided as much of the peripherals as possible.
The changes include:
- Move `I2C_DEV(0)` from PB6/PB7 to PB8/PB9 to solve pin conflict with
`QDEC_DEV(2)`.
- Use pins PB0, PB1, PB4, and PB5 for PWM instead PA8, PA9, PA10, and
PA11
- PA9 and PA10 is in pin conflict with `UART_DEV(0)` which is used
for stdio with `stdio_uart`, PA8 was in conflict with
`QDEC_DEV(0)`, PA11 was in conflict with USB D-
- Use PB6, PB7 as `QDEC_DEV(0)` (previously `QDEC_DEV(2)`), as this is
the only completely conflict free setting
- Use PB4/PB5 instead of PA6/PA7 for QDEC_DEV(1)
- This fixes a pin conflict with `SPI_DEV(0)` MISO (and
`ADC_LINE(4)`)
- Only provide QDEC at PB4/PB5 when PWM is not used to avoid conflict
- Only provide QDEC at PA8/PA9 when UART is not used to avoid conflict
- Use SPI2 (PB15, PB14, PB13, PB12) as `SPI_DEV(0)` instead of SPI1,
use SPI1 (PA7, PA6, PA5, PA4) as `SPI_DEV(1)`
- Only provide `SPI_DEV(1)` if the ADC is not in used to resolve a
pin conflict
- Move PB0 and PB1 at the end of the ADC lines (previously
`ADC_LINE(6)` and `ADC_LINE(7)`, now `ADC_LINE(8)` and `ADC_LINE(9)`)
- Only provide them when PWM is not in use (to resolve pin conflict
with PWM)
- Also do not provide them for the Blackpill boards, which are
missing pins PB0 and PB1 on the headers
To make life of users easier, a Pinout diagram with the new
configuration was added.
Nightlies are failing due to kconfig mismatch.
It would seem this is a result of bringing in the USB stuff.
I assume that this uses ztimer periph_timer as a backend as periph_timer is already selected.
However, kconfig only resolves one and not recursively making it hard to match.
For not a hack is added to override for these boards.
The `fs` in the file name means that on-chip FS PHY is configured for USB OTG HS. The file is renamed to `cfg_usb_otg_hs_phy_fs.h`
- to clarify that USB OTG HS is just configured with PHY FS and not HS and FS,
- to allow a configuration of USB OTG FS and HS in one file called `cfg_usb_otg_hs_fs.h` or whatever, and
- to allow a configuration of USB OTG HS with ULPI PHY in a file called `cfg_usb_otg_hs_phy_ulpi.h`.
f
LED LD1 has no special function on the board STM32F746-DISCO and therefore can be used freely. This LED is also defined as ARDUINO LED pin D13 in the schematic.
The board definition of the `nrf52dk` was likely created for some clone
board. However, an official board name nRF52 DK provided by Nordic
also exists. This resulted in previous contributors in confusing this
with the official board and "fixing" the board definition to match
the nRF52 DK board.
Or maybe it always has been meant to be the official board and someone
just added a wrong image to it.
In either case, this brings the documentation back in alignment with
the code by replacing references to some random clone board and the
image of the random clone board with those to/of the official Nordic
nRF52 DK board.
Due to the lack of new official avr-libc releases (which includes the
vendor header files needed to support different version of MCUs),
support for new MCUs was lacking. Distributions such as Debian addressed
this by extending the upstream code with vendor header files directly
obtained from Atmel / Microchip, but without paying attention to
details. As such, a naming inconsistency (ASIZE vs ASPACE) between
officially supported MCUs and new MCUs was introduced.
Now that avr-libc 2.1.0 is officially released, hardware support for new
MCUs is provided by upstream out of the box and only ASIZE is used as
name. This commit adds a bit of glue code to create aliases for ASIZE on
older avr-libc versions where needed. This fixes compilation with the
new avr-libc release and results in more consistent code.
- most were trivial
- missing group close or open
- extra space
- no doxygen comment
- name commad might open an implicit group
this hould also be implicit cosed but does not happen somtimes
- crazy: internal declared groups have to be closed internal
The inverted and non-inverted `LED<num>_ON` and `LED<num>_OFF` macros
are swapped. This didn't reveal in testing as the
`LED<num>_IS_INVERTED` macros where not properly evaluated, due to a
typo in the check. This fixes both.
Using the common STM32 board makefile provides all supported
programmers for STM32 boards. This allows e.g. to flash with
stm32flash via `make BOARD=im880b PROGRAMMER=stm32flash flash`.
Using `UART_DEV(0)` (UASRT1) for stdio allows to use the same TTL
adapter that is used for programming via `stm32flash` to be used for
serial, without re-wiring after flashing.