The function configures additional features of the DMA stream for F2/F4/F7.
`dma_setup_ext` added to configure F2/F4/F7 specific additional features like `MBURST`, `PBURST`, `FIFO` and Peripheral flow controller. It is supposed to be used after `dma_setup` and `dma_prepare`.
- boot the I2C after init in low power mode
- otherwise I2C will consume more power until the first time it is
used, which is surprising
- STM32 F1 only: reconfigure SCL and SDA as GPIOs while the I2C
peripheral is powered down
- When the I2C peripheral is not clocked, it drives SCL and SDA
down. This will dissipate power across the pull up resistor.
With only 8 possible prescalers, we can just loop over the values
and shift the clock. In addition to being much easier to read, using
shifts over divisions can be a lot faster on CPUs without hardware
division.
In addition an `assert()` is added that checks if the API contract
regarding the SPI frequency is honored. If the requested clock is too
low to be generated, we should rather have a blown assertion than
hard to trace communication errors.
Finally, the term prescaler is used instead of divider, as divider may
imply that the frequency is divided by the given value n, but
in fact is divided by 2^(n+1).
Previously, the /CS signal was performed by enabling / disabling the
SPI peripheral. This had the disadvantage that clock polarity settings
where not applied starting with `spi_acquire()`, as assumed by e.g.
the SPI SD card driver, but only just before transmitting data.
Now the SPI peripheral is enabled on `spi_acquire()` and only disabled
when calling `spi_release()`, and the `SPI_CR2_SSOE` bit in the `CR2`
register is used for hardware /CS handling (as supposed to).
This doesn't change the firmware, since for all STM32 MCUs with an
SPI driver the register setting in the mode did match the SPI mode
number by chance. But for some STM32 MCUs with no SPI driver yet
the register layout is indeed different. This will help to provide an
SPI driver for them as well.
The CR2 register was only written to if the settings differ from the
reset value. This wasn't actually a bug, since it was cleared in
`spi_release()` to the reset value again. Still, it looks like a bug,
may cause a pipeline flush due to the branch, and increased `.text`
size. So let's get rid of this.
The `SWJ_CFG` field of the `AFIO_MAPR` register is write only and values
read are undefined (random). Hence, using `AFIO->MAPR |= mask;` to
enable flags can corrupt the state of the `SWJ_CFG` (configure it to
an unintended value).
Two helper functions have been introduced:
- `afio_mapr_read()` reads the value, but sanitizes the `SWJ_CFG` field
to zero
- `afio_mapr_write()` writes the given value, but applies the `SWJ_CFG`
configured by the board before writing.
Finally, the `nucleo-f103rb` and `bluepill*`/`blackpill*` boards have
been updated to no longer specify `STM32F1_DISABLE_JTAG`, as this
is handled by the `SWJ_CFG` setting (which defaults to disabling JTAG).
19943: cpu/stm32: FMC used for low-level LCD parallel interface r=maribu a=gschorcht
### Contribution description
This PR provides the implementation of the LCD low-level MCU 8080 parallel interface using the FMC peripheral.
### Testing procedure
```
BOARD=stm32f723e-disco make -C tests/drivers/st77xx flash
```
and
```
BOARD=stm32l496g-disco make -C tests/drivers/st77xx flash
```
should work on top of PR #19941. Drawing operations should be much faster.
### Issues/PRs references
Depends on PR #19941
19978: treewide: fix typos to make codespell happy r=maribu a=maribu
### Contribution description
- fixes typos in comments and docs (no generated firmware changes expected)
- fixes a typo in a string in a GUI of a utility program
- add some false positives to the ignore list
### Testing procedure
- No generated binaries (except for the GUI version of the utility program to flash the MSB-A2) should change
- The diff should not look too scary
### Issues/PRs references
None
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
19952: cpu/stm32/periph/eth: Disable hardware checksums r=maribu a=yarrick
lwIP will fill them in already.
Having this enabled causes empty checksums to be sent: #19853
Co-authored-by: Erik Ekman <eekman@google.com>
If the board defines `FMC_RAM_ADDR` and `FMC_RAM_LEN`, the FMC RAM is used a additional heap if module `periph_fmc` is enabled.
For that purpose
- the linker symbols `_fmc_ram_addr` and `_fmc_ram_len` are set,
- a memory region `fcmram` is added in linker script for the FMC RAM based on these `_fcm_ram_*` linker symbols
- a section for the FMC RAM is defined in this memory region that defines the heap by setting `_sheap3` and `_eheap3` and
- the number of heaps is set to 4 since to use `_sheap3` and `_eheap3` even though `_sheap1` and `_eheap1` (the backup RAM) and `_sheap2` and `_eheap2` (SRAM4) are not present.
Several STM32 families such as C0, G0, H7, L5 and U5 use `SYSTEM_STM32..XX_H` define instead of `__SYSTEM_STM32..XX_H` define to prevent multiple inclusion of `system_stm32xxxx.h`.
The RNG can use HSI48, HSI48/2 or HSI16. Using MSI as 48 MHz clock source for RNG is not possible. The clock configuration in `stmclk_u5.c` activates anyway only the MSIS but not the MSIK which could be used for certain peripherals.
Therefore, this commit
- removes the configuration of MSI as 48 MHz clock for RNG and its selection in `RCC->CCIPR1.ICLKSEL`
- enables HSI48 and selects it for RNG.
The HSI48 will also be used in future for certain peripherals such as USB OTG FS and SDMMC.
19677: boards/nucleo-l432k: provide three periph_timer instances r=maribu a=maribu
### Contribution description
- `cpu/stm32/periph_timer`: Generalize to also work with timers that do not have 4 channels
- `boards/common/stm32`: Add timer config for three timers based on TIM2, TIM15, and TIM16 (the three general-purpose timers of the STM32L4)
- `boards/nucleo-l432kc`: Make use of the new timer config
19683: cpu/sam0_eth: clean up init() r=maribu a=benpicco
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Co-authored-by: Benjamin Valentin <benjamin.valentin@ml-pa.com>
19610: drivers/periph/rtc: improve doc on rtc_set_alarm r=maribu a=maribu
### Contribution description
- point out behavior on denormalized time stamps
- use errno codes to indicate errors (and adapt the few instances of actual error handling to use them)
19670: cpu/stm32: stm32f4 BRR from BSRR r=maribu a=kfessel
### Contribution description
sometimes one wants to save one instruction :)
just write the bits we need to write.
### Testing procedure
tests/periph/gpio_ll tests this
### Issues/PRs references
`@maribu` might know some reference
maybe #19407
19678: gnrc_sixlowpan_iphc: fix NULL pointer dereference r=maribu a=miri64
19679: gnrc_sixlowpan_frag_sfr: fix ARQ scheduler race-condition r=maribu a=miri64
19680: gnrc_sixlowpan_frag_rb: fix OOB write in _rbuf_add r=maribu a=miri64
19681: sys/xtimer: improve documentation r=maribu a=maribu
### Contribution description
- Add a warning that xtimer is deprecated, so that new code hopefully starts using ztimer
- Add a hint that `ztimer_xtimer_compat` can be used even after `xtimer` is gone
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Co-authored-by: Karl Fessel <karl.fessel@ovgu.de>
Co-authored-by: Martine Lenders <m.lenders@fu-berlin.de>
The assumption that all STM32 timers have exactly four channels no
longer holds. E.g. the STM32L4 has the following general purpose timers:
- TIM2: 32 bit, 4 channels
- TIM15: 16 bit, 2 channels
- TIM16: 16 bit, 1 channel
Hence, a new field is added to the timer configuration to also contain
the number of timer channels. Due to alignment the `struct` previously
was padded by 16 bit, so adding another 8 bit field doesn't increase
its size.
For backward compatibility, a value of `0` is considered as alias for
`TIMER_CHANNEL_NUMOF` (or 4), so that the number of timer channels
only needs to be set when the timer is different from the typical 4
channel timer. This helps backward compatibility.
19618: cpu/stm32: fix riotboot settings for L4 and WB r=benpicco a=gschorcht
### Contribution description
This PR fixes the `riotboot` configuration for L4 and WB.
The family is not called `stm32l4` or `stm32wb` but `l4` and `wb`. That is, the `riotboot` configuration didn't work at all. Furthermore, a minimum `RIOTBOOT_LEN` of `0x2000` is required for L4.
Found when investigating the compilation errors for `bootloaders/riotboot_serial` in PR #19576.
### Testing procedure
1. Green CI.
2. Use the following commands:
```
BOARD=nucleo-l496zg make -C tests/riotboot info-debug-variable-RIOTBOOT_HDR_LEN
BOARD=p-nucleo-wb55 make -C tests/riotboot info-debug-variable-RIOTBOOT_HDR_LEN
```
In master these commands give
```
0x400
```
With this PR these commands give
```
0x200
```
as expected.
3. Use the following commands:
```
BOARD=nucleo-l496zg make -C tests/riotboot info-debug-variable-RIOTBOOT_LEN
BOARD=p-nucleo-wb55 make -C tests/riotboot info-debug-variable-RIOTBOOT_LEN
```
In master these commands give
```
0x1000
```
With this PR these commands give
```
0x2000
```
as expected.
### Issues/PRs references
19639: tests/net/gnrc_mac_timeout: add automated test r=aabadie a=aabadie
19644: gnrc_ipv6_nib: include RIO with all subnets in downstream RA r=benpicco a=benpicco
19649: gnrc_sixlowpan_iphc: prefix bits outside context must be zero r=benpicco a=benpicco
19656: gnrc/ipv6_auto_subnets: allow to configure minimal prefix length r=benpicco a=benpicco
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Alexandre Abadie <alexandre.abadie@inria.fr>
Co-authored-by: Benjamin Valentin <benjamin.valentin@ml-pa.com>
The family is not called `stm32l4` or `stm32wb` but `l4` and `wb`. That is, the `riotboot` configuration didn't work. A minimum `RIOTBOOT_LEN` of `0x2000` is required for WB.
19628: Fix periph clk r=aabadie a=Enoch247
### Contribution description
This fixes some minor doc and argument type errors. See commit messages for details.
### Testing procedure
It compiles without errors for me.
### Issues/PRs references
None known
19637: sys/usb/usbus_msc: fix typo in C expression r=aabadie a=maribu
### Contribution description
Rather than setting the correct blk_len, the code only wrote 1 and 0 into the three bytes due to the use of a logic and where a bitwise and should be used.
Co-authored-by: Joshua DeWeese <jdeweese@primecontrols.com>
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
19572: cpu/stm32/periph_pwm: support of complementary timer outputs r=maribu a=gschorcht
### Contribution description
This PR provides the support of complementary timer outputs as PWM channels for advanced timers (TIM1/TIM8).
To use a complementary output of an advanced timer as PWM channel, the output is defined with an offset of 4, i.e. normal outputs are in the range of 0 to 3 (CH1...CH4) and complementary outputs are in the range of 4 to 6 (CH1N...CH3N). If the defined output is less than 4, the normal output is enabled, otherwise the complementary output is enabled.
This change is required to support PWM on boards that have connected the complementary outputs of advanced timers to the PWM connector pins, for example the STM32L496-DISCO board.
### Testing procedure
- Green CI
- Use any STM32 board which supports the `periph_pwm` feature. `tests/periph_pwm` should still work.
- Change the configuration for this board so that either timer TIM1 or TIM8 and a complementary channel is used for any exposed GPIO. `tests/periph_pwm` should also work with such a configuration.
### Issues/PRs references
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
The current implementation uses the core clock frequency to calculate
the needed prescalar to achieve a given ADC clock frequency. This is
incorrect. This patch fixes the calculation to use the correct source
clock (PCKLK2 ie APB2). It also changes the defined max clock rate to
use the frequency macro to improve readability.
To use a complementary output of an advanced timer as PWM channel, the output is defined with an offset of 4, i.e. normal outputs are in the range of 0 to 3 (CH1...CH4) and complementary outputs are in the range of 4 to 6 (CH1N...CH3N). If the defined output is less than 4, the normal output is enabled, otherwise the complementary output is enabled.
- Replace all users of `$(RIOTBASE)/build` with the already present
`$(BUILD_DIR)` variable
- Replace all users of `$(BUILD_DIR)/pkg` with the already present
`$(PKGDIRBASE)` variable
- Create a `CACHEDIR.TAG` file in the `$(BUILD_DIR)`
18056: pkg/cmsis: use unique package for CMSIS headers, DSP and NN modules r=benpicco a=aabadie
19571: cpu/stm32/periph_adc: fixes and improvements for L4 support r=benpicco a=gschorcht
### Contribution description
This PR provides the following fixes and improvements for the `periph_adc` implementation for STM32L4.
- Support STM32L496AG added.
- Instead of defining the number of ADC devices for each MCU model, the number of ADC devices is determined from ADCx definitions in CMSIS header.
- MCU specific register/value defines are valid for all L4 MCUs, model based conditional compilation is removed.
- The ADC clock disable function is fixed using a counter. The counter is incremented in `prep` and decremented in `done`. The ADC clock is disabled if the counter becomes 0.
- For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ (if supported) by setting `VREFBUF_ENABLE=1`.
- The ASCR register is available and has to be set for all STM32L471xx, STM32L475xx, STM32L476xx, STM32L485xx and STM32L486xx MCUs. Instead of using the CPU model for conditional compilation, the CPU line is used to support all MCU of that lines.
- Setting of SQR1 is fixed. Setting the SQR1 did only work before because the `ADC_SRQ_L` is set to 0 for a sequence length of 1.
- Setting the `ADC_CCR_CKMODE` did only work for the reset state. It is now cleared before it is set. Instead of using the `ADC_CCR_CKMODE_x` bits to set the mode, the mode defines are used.
- Support for V_REFINT as ADC channel added.
### Testing procedure
19589: gnrc/gnrc_netif_hdr_print: printout timestamp if enabled r=aabadie a=chudov
Co-authored-by: Alexandre Abadie <alexandre.abadie@inria.fr>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: chudov <chudov@gmail.com>
Setting the `ADC_CCR_CKMODE` did only work for the reset state. It is now cleared before it is set. Instead of using the `ADC_CCR_CKMODE_x` bits to set the mode, the mode defines are used.
19573: cpu/stm32/periph_dac: small improvements r=maribu a=gschorcht
### Contribution description
This PR provides the following improvements for `periph_dac` on STM32
- Support for `RCC_APB1ENR1_DAC1EN` symbol added.
- For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ (if supported) by setting `VREFBUF_ENABLE=1`.
- If the DAC peripheral has a mode register (`DAC_MCR`), it is set to normal mode with buffer enabled and connected to external pin and on-chip peripherals. This allows to measure the current value of a DAC channel with an ADC channel or to use the DAC channel also for other on-chip peripherals.
### Testing procedure
- Green CI
- `tests/periph_dac` should still work for any board supporting the `periph_dac` feature.
### Issues/PRs references
19579: doc/doxygen/src/flashing.md: work around Doxygen bug r=maribu a=maribu
### Contribution description
Doxygen fails to render inline code in headers correctly in the version the CI uses. So, work around the issue by not typestetting `stm32flash` as inline code but as regular text.
19583: tests: move cpu related applications to tests/cpu r=maribu a=aabadie
19584: tests/build_system/external_board_dirs: fix broken symlinks r=maribu a=aabadie
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Co-authored-by: Alexandre Abadie <alexandre.abadie@inria.fr>
The ASCR register is available and has to be set for all STM32L471xx, STM32L475xx, STM32L476xx, STM32L485xx and STM32L486xx MCUs. Instead of using the CPU model for conditional compilation, the CPU line is used to support all MCU of that lines.
For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ if supported by setting `VREFBUF_ENABLE=1`.
The ADC clock disable is fixed using a counter. The counter is incremented in `prep` and decremented in `done`. The ADC clock is disabled if the counter becomes 0.
If the DAC peripheral has a mode register (DAC_MCR), it is set to normal mode with buffer enabled and connected to external pin and on-chip peripherals. This allows to measure the current value of a DAC channel or to use the DAC channel also for other on-chip peripherals.
For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ if supported by setting `VREFBUF_ENABLE=1`.
PU/PD configuration has to be `0b00` for analog outputs which is corresponds to the reset state. However, if the GPIO is not in reset state but was used digital input/output with any pull resistor, the PU/PD configuration has also to be reset to work as ADC channel.
The current implmentation right shifted the 16 bit value passed into
`dac_set()` down to the 12 bits that the DAC is actually capable of.
This patch drops the shift and instead writes the 16 bit value to the
DAC's left aligned 12 bit wide data holding register.
Since the USB OTG FIFO sizes are partly defined in 32-bit words and partly in bytes, the documentation of the of the USB OTG FIFO size definitions is extended by the respective unit.
19460: cpu/stm32/usbdev_fs: fix ep registration and EP_REG assignments r=gschorcht a=dylad
### Contribution description
This PR provides two fixes for the `usbdev_fs` driver:
- Fix endpoints registration
- Fix assignment of toggleable bits in EP_REG(x) registers
These bugs were encountered with the USBUS MSC implementation.
Regarding the endpoints registration:
For the `usbdev_fs` peripheral, IN and OUT endpoints of the same index must have the same type.
For instance, if EP1 OUT is a bulk endpoint, EP1 IN must either be unused or used as bulk too but it cannot be used as interrupt or isochronous.
With the previous check, the following registration pattern (EP OUT Bulk -> EP IN Interrupt -> EP IN Bulk) would assign both EP OUT Bulk and EP IN Interrupt to same endpoint index. So the configuration would be broken.
Applying the same registration pattern with this patch would now produce EP OUT Bulk -> 1 / EP IN Interrupt -> 2 / EP IN Bulk 1. Which is a working configuration for this IP.
and for the second fix:
EP_REG(x) registers have a total of 6 toggleable bits. Those bits can only be toggled if we write a one to it, otherwise writing a zero has no effect
This commit fixes all the access to these registers to prevent from modifying these bits when not needed.
Without this patch, the endpoint status (VALID / NACK / STALL) can be erroneously modify because bits are not cleared when assigning the new content to the register and thus make the bits toggle and change values.
### Testing procedure
This can be tested with tests/usbus_msc on any board using this `usbdev_fs` driver.
It is easier to test this PR with #19443 alongside. Then the following would be enough:
`CFLAGS='-DSECTOR_COUNT=64' USEMODULE='mtd_emulated' make -j8 BOARD=p-nucleo-wb55 -C tests/usbus_msc flash`
Otherwise this can also be tested by attaching a SPI<->SDCARD adapter.
### Issues/PRs references
None.
Co-authored-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
EP_REG(x) registers have a total of 6 toggleable bits. Those bits can only be toggled if we write a one to it, otherwise writing a zero has no effect
This commit fixes all the access to these registers to prevent from modifying these bits when not needed
Signed-off-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
For the usbdev_fs peripheral, IN and OUT endpoints of the same index must have the same type.
For instance, if EP1 OUT is a bulk endpoint, EP1 IN must either be unused or used as bulk too but it cannot be used as interrupt or isochronous.
With the previous check, the following registration pattern (EP OUT Bulk -> EP IN Interrupt -> EP IN Bulk) would assign both EP OUT Bulk and EP IN Interrupt to same endpoint index. So the configuration would be broken.
Applying the same registration pattern with this patch would now produce EP OUT Bulk -> 1 / EP IN Interrupt -> 2 / EP IN Bulk 1. Which is a working configuration for this IP
Signed-off-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
The comments still claim STM32F1 support is missing, but this was
recently added.
Also, drop an empty line to fix `too many consecutive empty lines`
nitpick of the CI.
The driver previously failed to reliably clear the RXNE bit, resulting
in the next transfer to incorrectly read a stale register value. This
was noticed with the SD card SPI driver on an STM32F4, in which the
0xff byte of the previous byte transfer was returned instead of the
actual status byte, throwing the SD card driver off the rails.
19397: drivers/usbdev_synopsys_dwc2: fix and reenable DMA mode r=benpicco a=gschorcht
### Contribution description
This PR fixes the DMA mode for all STM32 USB OTG HS cores (including that for STM32F4xx CID 1.xxx) and reenables it. It fixes remaining problems in issue #19359.
This PR includes also includes some changes that are needed to use the DMA mode:
- EP number is used as defined in CMSIS (if defined) for STM32
- `periph_usbdev_hs` feature is added in Kconfig
- `periph_usbdev_hs` feature is added in board definition of `stm32f429i-disc1`
- largest number of available EPs is used for STM32 instead of the smallest number (to be able to use all EPs of HS peripheral)
- `stm32f429i-disco` is removed from blacklist in `tests/usbus_cdc_ecm` since it uses the HS peripheral
### Testing procedure
The following tests should work
```python
USEMODULE=stdio_cdc_acm BOARD=stm32f429i-disc1 make -j8 -C tests/usbus_cdc_ecm flash
```
<details>
<summary>Test results</summary>
```python
[526755.875691] usb 1-2.2: new full-speed USB device number 106 using xhci_hcd
[526755.977853] usb 1-2.2: config 1 interface 3 altsetting 1 endpoint 0x84 has invalid maxpacket 512, setting to 64
[526755.977856] usb 1-2.2: config 1 interface 3 altsetting 1 endpoint 0x2 has invalid maxpacket 512, setting to 64
[526755.978762] usb 1-2.2: New USB device found, idVendor=1209, idProduct=7d01, bcdDevice= 1.00
[526755.978764] usb 1-2.2: New USB device strings: Mfr=3, Product=2, SerialNumber=4
[526755.978766] usb 1-2.2: Product: stm32f429i-disc1
[526755.978768] usb 1-2.2: Manufacturer: RIOT-os.org
[526755.978769] usb 1-2.2: SerialNumber: 7C156425A950A8EB
[526755.991190] cdc_acm 1-2.2:1.0: ttyACM1: USB ACM device
[526755.998131] cdc_ether 1-2.2:1.2 usb0: register 'cdc_ether' at usb-0000:00:14.0-2.2, CDC Ethernet Device, a6:f6:4a:85:1d:c9
[526756.044150] cdc_ether 1-2.2:1.2 enp0s20f0u2u2i2: renamed from usb0
```
</details>
```python
USEMODULE='stdio_cdc_acm periph_usbdev_hs_utmi' BOARD=stm32f723e-disco make -j8 -C tests/usbus_cdc_ecm flash
```
<details>
<summary>Test results</summary>
```python
[528733.480207] usb 1-4.3.4: reset high-speed USB device number 32 using xhci_hcd
[528733.707800] usb 1-4.4: new high-speed USB device number 111 using xhci_hcd
[528733.808257] usb 1-4.4: config 1 interface 0 altsetting 0 endpoint 0x81 has an invalid bInterval 255, changing to 11
[528733.808260] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x1 has invalid maxpacket 64
[528733.808263] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x82 has invalid maxpacket 64
[528733.808642] usb 1-4.4: New USB device found, idVendor=1209, idProduct=7d01, bcdDevice= 1.00
[528733.808645] usb 1-4.4: New USB device strings: Mfr=3, Product=2, SerialNumber=4
[528733.808647] usb 1-4.4: Product: stm32f723e-disco
[528733.808649] usb 1-4.4: Manufacturer: RIOT-os.org
[528733.808651] usb 1-4.4: SerialNumber: A6BAC4E1B1E0806B
[528733.811988] cdc_acm 1-4.4:1.0: ttyACM1: USB ACM device
[528733.814456] cdc_ether 1-4.4:1.2 usb0: register 'cdc_ether' at usb-0000:00:14.0-4.4, CDC Ethernet Device, e6:75:97:3a:74:ba
[528733.854371] cdc_ether 1-4.4:1.2 enp0s20f0u4u4i2: renamed from usb0
```
</details>
```python
USEMODULE='stdio_cdc_acm periph_usbdev_hs_ulpi' BOARD=stm32f746g-disco make -j8 -C tests/usbus_cdc_ecm flash
```
<details>
<summary>Test results</summary>
```python
[529000.944482] usb 1-4.3.4: reset high-speed USB device number 32 using xhci_hcd
[529003.728260] usb 1-4.4: new high-speed USB device number 114 using xhci_hcd
[529003.833107] usb 1-4.4: config 1 interface 0 altsetting 0 endpoint 0x81 has an invalid bInterval 255, changing to 11
[529003.833111] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x1 has invalid maxpacket 64
[529003.833113] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x82 has invalid maxpacket 64
[529003.833743] usb 1-4.4: New USB device found, idVendor=1209, idProduct=7d00, bcdDevice= 1.00
[529003.833747] usb 1-4.4: New USB device strings: Mfr=3, Product=2, SerialNumber=4
[529003.833749] usb 1-4.4: Product: stm32f746g-disco
[529003.833751] usb 1-4.4: Manufacturer: RIOT-os.org
[529003.833753] usb 1-4.4: SerialNumber: 66FE8934D1A363E0
[529003.837143] cdc_acm 1-4.4:1.0: ttyACM1: USB ACM device
[529003.839755] cdc_ether 1-4.4:1.2 usb0: register 'cdc_ether' at usb-0000:00:14.0-4.4, CDC Ethernet Device, 6a:88:1f:1f:b1:f0
[529003.879025] cdc_ether 1-4.4:1.2 enp0s20f0u4u4i2: renamed from usb0```
```
</details>
### Issues/PRs references
Fixes#19359
19416: cpu/rpx0xx/cmsis: Update vendor header files r=benpicco a=maribu
### Contribution description
Generated new vendor header files from upstream SVD files using:
./SVDConv "$PICO_SDK_DIR"/src/rp2040/hardware_regs/rp2040.svd \
--generate=header --fields=macro --fields=enum
Note: The missing `--fields=struct` flag resulted in the header no longer containing bit-fields to represent different fields within registers. While this would generally ease writing code, the RP2040 has the unpleasant feature of corrupting the remaining bits of the register when a write access that is not word-sized occurs in the memory mapped I/O area. This could happen e.g. when a bit field is byte-sized and byte-aligned.
### Testing procedure
No binary changes (hopefully).
### Issues/PRs references
This adds a few additional vendor defines, notably for USB. If anyone were to implement USB, this would be a requirement.
19418: cpu/gd32v: fix gpio_read in periph_gpio r=benpicco a=gschorcht
### Contribution description
This PR fixes a bug in `gpio_read` which made `gpio_read` completely unusable!
A small bug with big consequences. In `gpio_read` the combined port | pin_num parameter `pin` was used instead of the pin number `pin_num` for the call of `_pin_is_input`. This caused the problem that for example instead of accessing GPIOA->CTL0 with address 0x40010800, address 0x60018c00 was accessed. As a result, a pin was randomly detected as input or output and thus a result was arbitrarily returned. Approx. 50% of all inputs always returned LOW.
I found this error by coincidence when I tried to find out why the BOOT0 button on a Sipeed Longan Nano is not usable as a button in RIOT.
### Testing procedure
Flash `tests/periph_gpio`
```
BOARD=sipeed-longan-nano make -j8 -C tests/periph_gpio flash
```
and use commands
```
init_in 0 8
read 0 8
```
Without this PR, the pin is always LOW. With the PR, the pin should be HIGH when the BOOT button is pressed.
### Issues/PRs references
19419: boards/sipeed-longan-nano: add BOOT as user button r=benpicco a=gschorcht
### Contribution description
This PR makes the BOOT button usable as a user button.
### Testing procedure
The test requires PR #19418 to work.
Flash and test:
```
BOARD=sipeed-longan-nano make -j8 -C tests/saul flash term
```
The output
```
Dev: BOOT Type: SENSE_BTN
Data: 0
```
should change to
```
Dev: BOOT Type: SENSE_BTN
Data: 1
```
when the BOOT button is pressed.
### Issues/PRs references
Depends on PR #19418
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Use the largest instead of the smallest number of available EPs for this definition. This became necessary to be able to use all EPs of a USB OTG HS peripheral if enabled.
19371: sys/usbus: check for the number of required and provided EPs in static configurations r=dylad a=gschorcht
### Contribution description
This PR provides a static check at compile time whether the number of EPs required in a static configuration does not exceed the number of EPs provided by the USB device.
#### Background
In issue #19359 the problem was reported that `usbus_cdc_ecm` didn't work together with `stdio_cdc_acm` on some STM32 boards. The reason for some of the boards was simply that the application tried to allocate more EPs than available and simply ignored this and just didn't work.
#### Solution
Since `auto_init_usb` uses a static configuration with exactly one USBUS stack instance and one USB device, at least in case `auto_init` is used a static check can be carried out to make sure that the number of EPs required by the application doesn't exceed the number of EPs provided by the USB device. For this purpose, each `usbus_*` module defines the number of IN and OUT EPs required by that module. Each USB device driver defines the number of EPs provided by USB device if it differs from the default of 8 EPs. During the auto initialization the total number of required IN and OUT EPs is then compared with the number of EPs provided by the USB device using a static assert.
### Testing procedure
1. Green CI
2. Compilation of
```python
USEMODULE='stdio_cdc_acm' BOARD=nucleo-f439zi make -j8 -C tests/usbus_cdc_ecm
```
should lead to compilation error
```python
sys/auto_init/usb/auto_init_usb.c:81:1: error: static assertion failed: "Number of required IN endpoints exceeded"
_Static_assert(USBUS_EP_IN_REQUIRED_NUMOF <= USBDEV_NUM_ENDPOINTS,
^~~~~~~~~~~~~~
Makefile.base:146: recipe for target 'tests/usbus_cdc_ecm/bin/nucleo-f439zi/auto_init_usbus/auto_init_usb.o' failed
```
while compilation of
```
USEMODULE='stdio_cdc_acm' BOARD=nucleo-f767zi make -j8 -C tests/usbus_cdc_ecm
```
should work.
### Issues/PRs references
Fixes issue #19359 partially.
19382: tests/pkg_nanors: use static allocation r=benpicco a=benpicco
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Benjamin Valentin <benpicco@beuth-hochschule.de>
The STM32 periph_timer driver reads the timer's status flags, then
clears them all. It is possible that a timer interrupt could occur
between reading the flag and clearing it. This would lead to a lost
interrupt.
The timer's status flags can be cleared by software, but can only be set
by the hardware. This patch takes advantage of this by only clearing the
flags it knows are set. The rest of the flags are set, which doesn't
actually change their state.
17086: usbdev: Add dedicated stall functions r=benpicco a=bergzand
### Contribution description
This PR adds dedicated stall functions for usbdev peripherals. Two
functions are added. The first function (usbdev_ep_stall) to enable and
disable the stall condition on generic endpoints. The second function is
a dedicated function to set the stall condition on endpoint zero in both
directions. This status can only be set and should automatically be
cleared by the usbdev implementation (or hardware) after a new setup
request is received from the host.
### Testing procedure
- examples/usbus_minimal should still enumerate correctly on the host side.
- #17085 can be used to demonstrate the ep0_stall function with the `tests/usbus_cdc_acm_stdio/` test
### Issues/PRs references
None
Co-authored-by: Koen Zandberg <koen@bergzand.net>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
The implmentation of `timer_set_absolute()` has The following problems.
First, it attempts to restore the auto reload register (ARR) to it's
default if the ARR was previosly set by `timer_set_periodic()` by
comparing it to the channel's capture compare (CC) register _after_ it
has already set the CC register. Secondly, it clears spurious IRQs
_after_ the CC register has been set. If the value being set is equal to
the timer's current count (or the two become equal before the supurios
IRQ clearing happens), this could cause a legitimate IRQ to be cleared.
The implmentation of `timer_set()` has the same error in handling the
ARR as described above.
This patch reorders the operations of both functions to do:
1. handle ARR
2. clear spurious IRQs
3. set channel's CC
4. enable IRQ
Additionally, the calulation of `value` in `timer_set()` is moved
earlier in the function's exec path as a pedantic measure.
If a timer's channel was set with a really small realtive duration from
now, such that it would be missed (underflowed), the driver would stop
the timer, potentially causing missed ticks. It was stopped to ensure
that the channel's output-compare register could be set to the current
counter value, before re-enabling the timer's counter. This is a
condition that will ensure that the underflow won't happen again and the
interrupt will fire, at the cost of losing some ticks for very high
speed clocks.
This patch replaces the logic that stopped the timer. Instead it uses a
register provided by the timer hardware to trigger timer interrupts via
software.
The macros CONCAT(), MIN(), and MAX() are defined over and over again in
RIOT's code base. This de-duplicates the code by moving the macros to a
common place.
Allow two threads to share the same timer - provided they use distinct
sets of timer channels - without occasionally corrupting registers or
state flags.