Fix the condition to return -ENOPNOTSUPP when i2c repeated read attempted.
Currently the error occures even if a read after write is attempted.
This is the standard way to i2c_read_reg which should be supported.
The -EOPNOTSUPP requires the previous R/W state to be reading.
This means a `I2C_SR2_TRA` must be checked to be 0.
There is no hardware limitation for custom boards based on STM32 to uses
SPI bus with signals coming from different PORT and alternate functions.
This patch allow alternate's function definition per pin basis, thus enable
the support of SPI bus signals routed on differents PORT.
Signed-off-by: Yannick Gicquel <ygicquel@gmail.com>
If `SPI_CS_UNDEF` is given as the `cs` parameter, CS pin must not be handled by the driver. Furthermore, if `cont` parameter is true, CS pin must not be disabled at the end of one transfer.
The ADC2 controller of the ESP32 is used by the WiFi module. The GPIOs connected to the ADC2 controller cannot be used as ADC channels if the WiFi module is enabled. This is clarified by a note in the documentation.
This change is for all boards with a sam0 cpu. This cpu just has one ADC.
It is unnecessary to have defines with ADC_0_ prefix as if multiple ADCs
are possible.
Some defines were not used, such as ADC_0_EN, ADC_0_CHANNELS,
ADC_MAX_CHANNELS, ADC_0_CLK_SOURCE, ADC_0_CHANNELS
Change all ADC_0_ prefixes to ADC_
Many MCUs contain some Backup or Low Power SRAM that is retained'even
in the deepest sleep modes.
In such sleep modes the MCU is essentually turned off with only the RTC
still running.
It can be woken by a GPIO or a RTC alarm. When this happens, a reset is
triggered and the normal startup routine is invoked.
This adds bss & data section for this memory in the linker script.
This allows for structures to be placed in it e.g.:
e.g.:
static uint8_t persistent_buffer[64] __attribute__((section(".backup.bss")));
static uint32_t persistent_counter __attribute__((section(".backup.data"))) = 1234;
Thin archives also cause a boot loop when using the flash module.
To prevent further surprises, disable thin archives unconditionally
until the cause for this behaviour is known.
In fractional mode, 3 bits are used to store the fractional part.
Therefore we must multiply / divide by 8 instead of 10 in order to
get the correct values.
There are some constraints to the oscillators on the samd5x.
- DFLL is fixed to run at 48 MHz
- DPLL can run at 96 to 200 MHz
Always use DFLL for frequencies <= 48 MHz.
For frequencies >= 96 MHz, use DPLL directly.
For frequencies < 96 MHz, clock DPLL at twice the desired frequency
and use a divider.
At the time of configuration, the pthread-reaper uses '164' bytes of
stack when 'idle' stack is only '160'. By having double it gives some
margin.
ps
pid | name | state Q | pri | stack ( used) | base addr | current
1 | idle | pending Q | 15 | 160 ( 128) | 0x4000007c | 0x4000009c
2 | main | running Q | 7 | 2560 ( 1232) | 0x4000011c | 0x4000095c
3 | pthread-reaper | bl rx _ | 0 | 320 ( 164) | 0x40000bac | 0x40000c48
| SUM | | | 3040 ( 1524)
For a yet unknown reason, both esp8266 and esp32 get stuck in a
reboot loop when thin archives are used.
As a workaround, disable thin archives for now if esp_wifi is used.
fixes#12258
* CPU files should already have 'CPU' defined by the board.
* Do not conditionally define CPU as it is not needed.
This is part of cleanup prior to moving the CPU/CPU_MODEL to
Makefile.features.
A note says "The nomips16 attribute should not really be needed,
it works around a toolchain issue in 2016.05-03."
In fact, in 2018.09-03, the attribute leads to this error:
```cpu/mips32r2_common/thread_arch.c:191:1: error: ‘_mips_handle_exception’ redeclared with conflicting ‘nomips16’ attributes```
This this commit removes the attribute.
This reverts commit 422644bd3a.
The option is only supported after 2.6 which is currently not the
version given with 'esp' toolchain.
It was a bit too early to switch to the new version.
Version 2.7 also supports the old option with only a warning.
A naive implementation may set a RTC alarm in 30s by calling
struct tm now;
rtc_get_time(&now);
now.tm_sec += 30;
rtc_set_alarm(&now, _cb, NULL);
This works for RTC implementations that use a RTT internally and call
mktime() to convert the struct tm to a unix timestamp, as mktime() will
normalize the struct in the process.
Call rtc_tm_normalize() when the RTC uses separate registers for time / date
components to ensure it is normalized.
This also modifies tests/periph_rtc to exercise this case.
The INTFLAGS register is cleared by writing a 1 to the corresponding interrupt
flag bit. From the samr21's manual:
> Writing a zero to this bit has no effect.
> Writing a one to this bit clears the Compare 0 interrupt flag.
This is a common pattern in flag registers.
This RTT driver is using or-equal to clear the flags, which means it can
possibly clear other interrupts. There's a small chance that one event is
missed if it happens very close to another event.
Credits to @benpicco, @dylad for pointing out missing fixes.
- Moved compiler & linker flags from boards/common/msba2 to cpu/arm7_common
- Moved dependency to newlib nano to cpu/arm7_common
- Moved config to link in cpu/startup.o to cpu/arm7_common
- Removed stdio_init() from newlib's _init(), as this is too late in the boot
process to allow DEBUG()ing during periph_init()
- Added stdio_init() to the various cpu_init() routines of the ARM CPUs just
before periph_init()
Engineering sample A doesn't have a functional USB peripheral (errata
issue 94). This commit adds an assertion check for this revision to
prevent some developer headaches.
Instead of having a send buffer as member `esp_wifi` netdev, a local variable is used now as send buffer. This avoids the need for a locking mechanism and reduces the risk of deadlocks.
Receive call back function `_esp_wifi_rx_cb` is called from WiFi hardware driver with a pointer to a frame buffer that is allocated in the WiFi hardware driver. This frame buffer was freed immediately after copying its content to a single local receive buffer of the `esp_wifi` netdev. The local receive buffer remained occupied until the protocol stack had processed it. Further incoming packets were dropped. However, very often a number of subsequent WiFi frames are received at the same time before the first one is processed completely. Having the single local receive buffer to hold only one received frame, led to a number of lost packets, even at low network load. Therefore, a ringbuffer of rx_buf elements was introduced which doesn't store the frames directly but only references to the frame buffers allocated in WiFi hardware driver. Since there is enough memory to hold several frames, the frames buffers allocated in WiFi hardware driver aren't freed immediatly any longer but are kept until the frame is processed by the protocol stack. This results in a much less loss rate of packets.
Events of different type can be pending at the same time. Therefore it is not possible to use ascending identifiers for the presence of a pending event. Rather, each event type has to be represented by one bit. Thes bits ORed identify all types of pending events. In the esp_wifi_isr function all pending events are then handled in one call. Otherwise, some events might be lost.
Using flash size in megabits is deprecated by esptool.
Use the new megabyte notation.
WARNING: Flash size arguments in megabits like '8m' are deprecated.
Please use the equivalent size '1MB'.
Megabit arguments may be removed in a future release.
esptool.py v2.6
UART FIFO must contain only 1 byte when newlib's `printf` function is used. Otherwise, outputs that are still not sent over UART are lost when `printf` is called asynchronousely.
To avoid unresolved symbols for unused functions during linking, compiler option `-ffunction-sections` is used now. Linker option `--warn-unresolved-symbols` is removed to get errors if required symbols cannot be resolved.
The modules `newlib, `newlib_syscalls_default` and `stdio_uart` are now used by default for output to the UART interface. This also reduces the dependency rules.
The overridden stdio functions `puts`, `putchar` and `printf` were removed. Instead, the corresponding newlib functions are always used. Using the newlib functions fixes output conflicts when using `f *` functions like `fprintf`,` fputs`, ... with `stdout` as the file parameter.
Use the -gz option to compress ELF sections containing DWARF information.
This saves around 50% of disk space, without any side effects.
See https://gcc.gnu.org/onlinedocs/gcc-9.2.0/gcc/Debugging-Options.html#Debugging-Options
for more infomation on this option.
Some platforms have an outdated toolchain that does not support -gz so
the flag is blacklisted there. Even then, the results are quite impressive.
I used @cladmi's `buildtest` branch (https://github.com/cladmi/RIOT/tree/wip/du/buildtest)
with this change and compiled the `examples/default` application:
```
$ BUILD_IN_DOCKER=1 DOCKER="sudo docker" make -C examples/default buildtest-indocker
```
The size was obtained with:
```
$ find output -name "*.bin.bindirsize" -type f -exec tail -n1 '{}' \; | cut -f 1 | awk '{s+=$1} END {printf "%.0f", s}'
```
Results:
- Vanilla: 10328112 KB (~10GB).
- with -gz: 4982788 KB (~5GB).
This was inspired by #8496.
_exti() always assumes only 2 ports, so it will always fail when using
e.g. port C or port D on same54.
Instead, determine the number of ports from the dimensions of the exti_config
array.
As the comment above cpu_switch_context_exit notes:
sched_active_thread is not valid when cpu_switch_context_exit() is called.
Unfortunately, thread_yield(), which is called directly by
cpu_switch_context_exit(), uses sched_active_thread possibly resulting
in a null pointer dereference.
Solution: Trigger a software interrupt to perform a context switch and
let sched_run() determine the next valid thread from there.
once hardware flow control is enabled, rts should only be initialized
after the uart is enabled by setting the UE flag. This is stated in the
stm32f4 errata.
in uart_poweroff the peripheral should be disabled through the register
instead of just disabling the peripheral clock. In uart_poweron the
peripheral should be enabled after enabling the clock.
Not explicitely disabling the peripheral causes some bad signals on the
uart line sometimes.
Module `newlib` is now used by default. Therefore, the separation of initialization of ctors and the newlibc is not needed any longer. Instead of calling `do_global_ctors` and `_init` separately, `__libc_init_array` is called. Explicit function `do_global_ctors` is removed.
While deleting multiple sectors in flash, interrupts were disabled over the whole time. Thus, deleting the entire flash led to the triggering of the watchdog timer and thus to a restart. Therefore, the interrupts and the cache are disabled only for the time of deleting a single sector. The same problem occurred for read and write large data sets.
Initializing the stdio file descriptors in global reent structure with newlib fake stdio file descriptors led to the problem that newlib stdio functions printf and puts were not working since they can't operate on these fake stdio file descriptors. Therefore, this initialization was removed. Now, the real stdio file descriptors as created automatically by newlib are used. Specific functions `printf`, `puts`, `getchar`and `putchar` are not required any longer and are removed now.
Modules newlib and newlib_syscalls_default are now used by default. Conditional compilations for MODULE_NEWLIB_SYSCALLS_DEFAULT as well as alternative code are removed completely.
printf and puts used ets_printf before. Unfortunately, ets_printf adds an additional \r for each \n which is not consistent with other RIOT platforms. As a result some automatic tests failed. Therefore, both functions write now character-wise directly to the UART interface.
Memory management function like `malloc`, `calloc`, `realloc` and `free` must not be preempted when they operate on allocator structures. To avoid such a preemption, wrappers around these functions are used which simply disable all interrupts for the time of their execution.
Using a mutex for critical section handling with portENTER_CRITICAL and portEXIT_CRITICAL does not work for RIOT, as this function can also be called in the interrupt context. Therefore, the given mutex is not used. Instead, the basic default FreeRTOS mechanism for critical sections is used by simply disabling interrupts. Since context switches for the ESP32 are also based on interrupts, there is no possibility that another thread will enter the critical section once the interrupts are disabled.
- stm32f7 use sectors instead of pages, they go either from 16KB to
128KB, or from 32KB to 25KB. Smaller sectors are at the begining of
the flash. Slots must start at the begining of a sector to not overlap.
- Minimum required RIOBOOT_HDR_LEN or stm32f7 is 0x200
to respect vector table alignment
- Add CPU_FLASH_BASE