19573: cpu/stm32/periph_dac: small improvements r=maribu a=gschorcht
### Contribution description
This PR provides the following improvements for `periph_dac` on STM32
- Support for `RCC_APB1ENR1_DAC1EN` symbol added.
- For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ (if supported) by setting `VREFBUF_ENABLE=1`.
- If the DAC peripheral has a mode register (`DAC_MCR`), it is set to normal mode with buffer enabled and connected to external pin and on-chip peripherals. This allows to measure the current value of a DAC channel with an ADC channel or to use the DAC channel also for other on-chip peripherals.
### Testing procedure
- Green CI
- `tests/periph_dac` should still work for any board supporting the `periph_dac` feature.
### Issues/PRs references
19579: doc/doxygen/src/flashing.md: work around Doxygen bug r=maribu a=maribu
### Contribution description
Doxygen fails to render inline code in headers correctly in the version the CI uses. So, work around the issue by not typestetting `stm32flash` as inline code but as regular text.
19583: tests: move cpu related applications to tests/cpu r=maribu a=aabadie
19584: tests/build_system/external_board_dirs: fix broken symlinks r=maribu a=aabadie
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Co-authored-by: Alexandre Abadie <alexandre.abadie@inria.fr>
If the DAC peripheral has a mode register (DAC_MCR), it is set to normal mode with buffer enabled and connected to external pin and on-chip peripherals. This allows to measure the current value of a DAC channel or to use the DAC channel also for other on-chip peripherals.
For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ if supported by setting `VREFBUF_ENABLE=1`.
PU/PD configuration has to be `0b00` for analog outputs which is corresponds to the reset state. However, if the GPIO is not in reset state but was used digital input/output with any pull resistor, the PU/PD configuration has also to be reset to work as ADC channel.
The current implmentation right shifted the 16 bit value passed into
`dac_set()` down to the 12 bits that the DAC is actually capable of.
This patch drops the shift and instead writes the 16 bit value to the
DAC's left aligned 12 bit wide data holding register.
Since the USB OTG FIFO sizes are partly defined in 32-bit words and partly in bytes, the documentation of the of the USB OTG FIFO size definitions is extended by the respective unit.
19460: cpu/stm32/usbdev_fs: fix ep registration and EP_REG assignments r=gschorcht a=dylad
### Contribution description
This PR provides two fixes for the `usbdev_fs` driver:
- Fix endpoints registration
- Fix assignment of toggleable bits in EP_REG(x) registers
These bugs were encountered with the USBUS MSC implementation.
Regarding the endpoints registration:
For the `usbdev_fs` peripheral, IN and OUT endpoints of the same index must have the same type.
For instance, if EP1 OUT is a bulk endpoint, EP1 IN must either be unused or used as bulk too but it cannot be used as interrupt or isochronous.
With the previous check, the following registration pattern (EP OUT Bulk -> EP IN Interrupt -> EP IN Bulk) would assign both EP OUT Bulk and EP IN Interrupt to same endpoint index. So the configuration would be broken.
Applying the same registration pattern with this patch would now produce EP OUT Bulk -> 1 / EP IN Interrupt -> 2 / EP IN Bulk 1. Which is a working configuration for this IP.
and for the second fix:
EP_REG(x) registers have a total of 6 toggleable bits. Those bits can only be toggled if we write a one to it, otherwise writing a zero has no effect
This commit fixes all the access to these registers to prevent from modifying these bits when not needed.
Without this patch, the endpoint status (VALID / NACK / STALL) can be erroneously modify because bits are not cleared when assigning the new content to the register and thus make the bits toggle and change values.
### Testing procedure
This can be tested with tests/usbus_msc on any board using this `usbdev_fs` driver.
It is easier to test this PR with #19443 alongside. Then the following would be enough:
`CFLAGS='-DSECTOR_COUNT=64' USEMODULE='mtd_emulated' make -j8 BOARD=p-nucleo-wb55 -C tests/usbus_msc flash`
Otherwise this can also be tested by attaching a SPI<->SDCARD adapter.
### Issues/PRs references
None.
Co-authored-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
EP_REG(x) registers have a total of 6 toggleable bits. Those bits can only be toggled if we write a one to it, otherwise writing a zero has no effect
This commit fixes all the access to these registers to prevent from modifying these bits when not needed
Signed-off-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
For the usbdev_fs peripheral, IN and OUT endpoints of the same index must have the same type.
For instance, if EP1 OUT is a bulk endpoint, EP1 IN must either be unused or used as bulk too but it cannot be used as interrupt or isochronous.
With the previous check, the following registration pattern (EP OUT Bulk -> EP IN Interrupt -> EP IN Bulk) would assign both EP OUT Bulk and EP IN Interrupt to same endpoint index. So the configuration would be broken.
Applying the same registration pattern with this patch would now produce EP OUT Bulk -> 1 / EP IN Interrupt -> 2 / EP IN Bulk 1. Which is a working configuration for this IP
Signed-off-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
The comments still claim STM32F1 support is missing, but this was
recently added.
Also, drop an empty line to fix `too many consecutive empty lines`
nitpick of the CI.
The driver previously failed to reliably clear the RXNE bit, resulting
in the next transfer to incorrectly read a stale register value. This
was noticed with the SD card SPI driver on an STM32F4, in which the
0xff byte of the previous byte transfer was returned instead of the
actual status byte, throwing the SD card driver off the rails.
19397: drivers/usbdev_synopsys_dwc2: fix and reenable DMA mode r=benpicco a=gschorcht
### Contribution description
This PR fixes the DMA mode for all STM32 USB OTG HS cores (including that for STM32F4xx CID 1.xxx) and reenables it. It fixes remaining problems in issue #19359.
This PR includes also includes some changes that are needed to use the DMA mode:
- EP number is used as defined in CMSIS (if defined) for STM32
- `periph_usbdev_hs` feature is added in Kconfig
- `periph_usbdev_hs` feature is added in board definition of `stm32f429i-disc1`
- largest number of available EPs is used for STM32 instead of the smallest number (to be able to use all EPs of HS peripheral)
- `stm32f429i-disco` is removed from blacklist in `tests/usbus_cdc_ecm` since it uses the HS peripheral
### Testing procedure
The following tests should work
```python
USEMODULE=stdio_cdc_acm BOARD=stm32f429i-disc1 make -j8 -C tests/usbus_cdc_ecm flash
```
<details>
<summary>Test results</summary>
```python
[526755.875691] usb 1-2.2: new full-speed USB device number 106 using xhci_hcd
[526755.977853] usb 1-2.2: config 1 interface 3 altsetting 1 endpoint 0x84 has invalid maxpacket 512, setting to 64
[526755.977856] usb 1-2.2: config 1 interface 3 altsetting 1 endpoint 0x2 has invalid maxpacket 512, setting to 64
[526755.978762] usb 1-2.2: New USB device found, idVendor=1209, idProduct=7d01, bcdDevice= 1.00
[526755.978764] usb 1-2.2: New USB device strings: Mfr=3, Product=2, SerialNumber=4
[526755.978766] usb 1-2.2: Product: stm32f429i-disc1
[526755.978768] usb 1-2.2: Manufacturer: RIOT-os.org
[526755.978769] usb 1-2.2: SerialNumber: 7C156425A950A8EB
[526755.991190] cdc_acm 1-2.2:1.0: ttyACM1: USB ACM device
[526755.998131] cdc_ether 1-2.2:1.2 usb0: register 'cdc_ether' at usb-0000:00:14.0-2.2, CDC Ethernet Device, a6:f6:4a:85:1d:c9
[526756.044150] cdc_ether 1-2.2:1.2 enp0s20f0u2u2i2: renamed from usb0
```
</details>
```python
USEMODULE='stdio_cdc_acm periph_usbdev_hs_utmi' BOARD=stm32f723e-disco make -j8 -C tests/usbus_cdc_ecm flash
```
<details>
<summary>Test results</summary>
```python
[528733.480207] usb 1-4.3.4: reset high-speed USB device number 32 using xhci_hcd
[528733.707800] usb 1-4.4: new high-speed USB device number 111 using xhci_hcd
[528733.808257] usb 1-4.4: config 1 interface 0 altsetting 0 endpoint 0x81 has an invalid bInterval 255, changing to 11
[528733.808260] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x1 has invalid maxpacket 64
[528733.808263] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x82 has invalid maxpacket 64
[528733.808642] usb 1-4.4: New USB device found, idVendor=1209, idProduct=7d01, bcdDevice= 1.00
[528733.808645] usb 1-4.4: New USB device strings: Mfr=3, Product=2, SerialNumber=4
[528733.808647] usb 1-4.4: Product: stm32f723e-disco
[528733.808649] usb 1-4.4: Manufacturer: RIOT-os.org
[528733.808651] usb 1-4.4: SerialNumber: A6BAC4E1B1E0806B
[528733.811988] cdc_acm 1-4.4:1.0: ttyACM1: USB ACM device
[528733.814456] cdc_ether 1-4.4:1.2 usb0: register 'cdc_ether' at usb-0000:00:14.0-4.4, CDC Ethernet Device, e6:75:97:3a:74:ba
[528733.854371] cdc_ether 1-4.4:1.2 enp0s20f0u4u4i2: renamed from usb0
```
</details>
```python
USEMODULE='stdio_cdc_acm periph_usbdev_hs_ulpi' BOARD=stm32f746g-disco make -j8 -C tests/usbus_cdc_ecm flash
```
<details>
<summary>Test results</summary>
```python
[529000.944482] usb 1-4.3.4: reset high-speed USB device number 32 using xhci_hcd
[529003.728260] usb 1-4.4: new high-speed USB device number 114 using xhci_hcd
[529003.833107] usb 1-4.4: config 1 interface 0 altsetting 0 endpoint 0x81 has an invalid bInterval 255, changing to 11
[529003.833111] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x1 has invalid maxpacket 64
[529003.833113] usb 1-4.4: config 1 interface 1 altsetting 0 bulk endpoint 0x82 has invalid maxpacket 64
[529003.833743] usb 1-4.4: New USB device found, idVendor=1209, idProduct=7d00, bcdDevice= 1.00
[529003.833747] usb 1-4.4: New USB device strings: Mfr=3, Product=2, SerialNumber=4
[529003.833749] usb 1-4.4: Product: stm32f746g-disco
[529003.833751] usb 1-4.4: Manufacturer: RIOT-os.org
[529003.833753] usb 1-4.4: SerialNumber: 66FE8934D1A363E0
[529003.837143] cdc_acm 1-4.4:1.0: ttyACM1: USB ACM device
[529003.839755] cdc_ether 1-4.4:1.2 usb0: register 'cdc_ether' at usb-0000:00:14.0-4.4, CDC Ethernet Device, 6a:88:1f:1f:b1:f0
[529003.879025] cdc_ether 1-4.4:1.2 enp0s20f0u4u4i2: renamed from usb0```
```
</details>
### Issues/PRs references
Fixes#19359
19416: cpu/rpx0xx/cmsis: Update vendor header files r=benpicco a=maribu
### Contribution description
Generated new vendor header files from upstream SVD files using:
./SVDConv "$PICO_SDK_DIR"/src/rp2040/hardware_regs/rp2040.svd \
--generate=header --fields=macro --fields=enum
Note: The missing `--fields=struct` flag resulted in the header no longer containing bit-fields to represent different fields within registers. While this would generally ease writing code, the RP2040 has the unpleasant feature of corrupting the remaining bits of the register when a write access that is not word-sized occurs in the memory mapped I/O area. This could happen e.g. when a bit field is byte-sized and byte-aligned.
### Testing procedure
No binary changes (hopefully).
### Issues/PRs references
This adds a few additional vendor defines, notably for USB. If anyone were to implement USB, this would be a requirement.
19418: cpu/gd32v: fix gpio_read in periph_gpio r=benpicco a=gschorcht
### Contribution description
This PR fixes a bug in `gpio_read` which made `gpio_read` completely unusable!
A small bug with big consequences. In `gpio_read` the combined port | pin_num parameter `pin` was used instead of the pin number `pin_num` for the call of `_pin_is_input`. This caused the problem that for example instead of accessing GPIOA->CTL0 with address 0x40010800, address 0x60018c00 was accessed. As a result, a pin was randomly detected as input or output and thus a result was arbitrarily returned. Approx. 50% of all inputs always returned LOW.
I found this error by coincidence when I tried to find out why the BOOT0 button on a Sipeed Longan Nano is not usable as a button in RIOT.
### Testing procedure
Flash `tests/periph_gpio`
```
BOARD=sipeed-longan-nano make -j8 -C tests/periph_gpio flash
```
and use commands
```
init_in 0 8
read 0 8
```
Without this PR, the pin is always LOW. With the PR, the pin should be HIGH when the BOOT button is pressed.
### Issues/PRs references
19419: boards/sipeed-longan-nano: add BOOT as user button r=benpicco a=gschorcht
### Contribution description
This PR makes the BOOT button usable as a user button.
### Testing procedure
The test requires PR #19418 to work.
Flash and test:
```
BOARD=sipeed-longan-nano make -j8 -C tests/saul flash term
```
The output
```
Dev: BOOT Type: SENSE_BTN
Data: 0
```
should change to
```
Dev: BOOT Type: SENSE_BTN
Data: 1
```
when the BOOT button is pressed.
### Issues/PRs references
Depends on PR #19418
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Use the largest instead of the smallest number of available EPs for this definition. This became necessary to be able to use all EPs of a USB OTG HS peripheral if enabled.
19371: sys/usbus: check for the number of required and provided EPs in static configurations r=dylad a=gschorcht
### Contribution description
This PR provides a static check at compile time whether the number of EPs required in a static configuration does not exceed the number of EPs provided by the USB device.
#### Background
In issue #19359 the problem was reported that `usbus_cdc_ecm` didn't work together with `stdio_cdc_acm` on some STM32 boards. The reason for some of the boards was simply that the application tried to allocate more EPs than available and simply ignored this and just didn't work.
#### Solution
Since `auto_init_usb` uses a static configuration with exactly one USBUS stack instance and one USB device, at least in case `auto_init` is used a static check can be carried out to make sure that the number of EPs required by the application doesn't exceed the number of EPs provided by the USB device. For this purpose, each `usbus_*` module defines the number of IN and OUT EPs required by that module. Each USB device driver defines the number of EPs provided by USB device if it differs from the default of 8 EPs. During the auto initialization the total number of required IN and OUT EPs is then compared with the number of EPs provided by the USB device using a static assert.
### Testing procedure
1. Green CI
2. Compilation of
```python
USEMODULE='stdio_cdc_acm' BOARD=nucleo-f439zi make -j8 -C tests/usbus_cdc_ecm
```
should lead to compilation error
```python
sys/auto_init/usb/auto_init_usb.c:81:1: error: static assertion failed: "Number of required IN endpoints exceeded"
_Static_assert(USBUS_EP_IN_REQUIRED_NUMOF <= USBDEV_NUM_ENDPOINTS,
^~~~~~~~~~~~~~
Makefile.base:146: recipe for target 'tests/usbus_cdc_ecm/bin/nucleo-f439zi/auto_init_usbus/auto_init_usb.o' failed
```
while compilation of
```
USEMODULE='stdio_cdc_acm' BOARD=nucleo-f767zi make -j8 -C tests/usbus_cdc_ecm
```
should work.
### Issues/PRs references
Fixes issue #19359 partially.
19382: tests/pkg_nanors: use static allocation r=benpicco a=benpicco
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Benjamin Valentin <benpicco@beuth-hochschule.de>
The STM32 periph_timer driver reads the timer's status flags, then
clears them all. It is possible that a timer interrupt could occur
between reading the flag and clearing it. This would lead to a lost
interrupt.
The timer's status flags can be cleared by software, but can only be set
by the hardware. This patch takes advantage of this by only clearing the
flags it knows are set. The rest of the flags are set, which doesn't
actually change their state.
17086: usbdev: Add dedicated stall functions r=benpicco a=bergzand
### Contribution description
This PR adds dedicated stall functions for usbdev peripherals. Two
functions are added. The first function (usbdev_ep_stall) to enable and
disable the stall condition on generic endpoints. The second function is
a dedicated function to set the stall condition on endpoint zero in both
directions. This status can only be set and should automatically be
cleared by the usbdev implementation (or hardware) after a new setup
request is received from the host.
### Testing procedure
- examples/usbus_minimal should still enumerate correctly on the host side.
- #17085 can be used to demonstrate the ep0_stall function with the `tests/usbus_cdc_acm_stdio/` test
### Issues/PRs references
None
Co-authored-by: Koen Zandberg <koen@bergzand.net>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
The implmentation of `timer_set_absolute()` has The following problems.
First, it attempts to restore the auto reload register (ARR) to it's
default if the ARR was previosly set by `timer_set_periodic()` by
comparing it to the channel's capture compare (CC) register _after_ it
has already set the CC register. Secondly, it clears spurious IRQs
_after_ the CC register has been set. If the value being set is equal to
the timer's current count (or the two become equal before the supurios
IRQ clearing happens), this could cause a legitimate IRQ to be cleared.
The implmentation of `timer_set()` has the same error in handling the
ARR as described above.
This patch reorders the operations of both functions to do:
1. handle ARR
2. clear spurious IRQs
3. set channel's CC
4. enable IRQ
Additionally, the calulation of `value` in `timer_set()` is moved
earlier in the function's exec path as a pedantic measure.
If a timer's channel was set with a really small realtive duration from
now, such that it would be missed (underflowed), the driver would stop
the timer, potentially causing missed ticks. It was stopped to ensure
that the channel's output-compare register could be set to the current
counter value, before re-enabling the timer's counter. This is a
condition that will ensure that the underflow won't happen again and the
interrupt will fire, at the cost of losing some ticks for very high
speed clocks.
This patch replaces the logic that stopped the timer. Instead it uses a
register provided by the timer hardware to trigger timer interrupts via
software.
The macros CONCAT(), MIN(), and MAX() are defined over and over again in
RIOT's code base. This de-duplicates the code by moving the macros to a
common place.
Allow two threads to share the same timer - provided they use distinct
sets of timer channels - without occasionally corrupting registers or
state flags.
These models have 256 kByte RAM, but the upper 64 kByte are used as CCM data RAM accessible at 0x1000:0000. The access to 0x2003:xxxx leads to a hard fault.
There are STM32 families where all models use only the Synopsys DWC2 USB OTG core while others completely use only the USB Device FS core. For these families then either the driver `drivers/usbdev_synopsys_dwc2` or the driver `cpu/stm32/periph/usbdev` is used depending on the respective family. However, the STM32 families F1 and L4 use both cores. The correct driver must therefore be selected depending on the CPU line or CPU model.
This splits up the clock configs.
It allows CPU_FAM based file sourcing and also common CPU_FAMs.
The dependancies are also included in wildcards would be used for the CPU_FAM macro.
This should be much more readable.
This also takes into account the HSE speeds in order to match the make/header resolution.
Some hidden symbols were added to make sorting many CPU_SERIES dependencies easier.