The assumption that all STM32 timers have exactly four channels no
longer holds. E.g. the STM32L4 has the following general purpose timers:
- TIM2: 32 bit, 4 channels
- TIM15: 16 bit, 2 channels
- TIM16: 16 bit, 1 channel
Hence, a new field is added to the timer configuration to also contain
the number of timer channels. Due to alignment the `struct` previously
was padded by 16 bit, so adding another 8 bit field doesn't increase
its size.
For backward compatibility, a value of `0` is considered as alias for
`TIMER_CHANNEL_NUMOF` (or 4), so that the number of timer channels
only needs to be set when the timer is different from the typical 4
channel timer. This helps backward compatibility.
19572: cpu/stm32/periph_pwm: support of complementary timer outputs r=maribu a=gschorcht
### Contribution description
This PR provides the support of complementary timer outputs as PWM channels for advanced timers (TIM1/TIM8).
To use a complementary output of an advanced timer as PWM channel, the output is defined with an offset of 4, i.e. normal outputs are in the range of 0 to 3 (CH1...CH4) and complementary outputs are in the range of 4 to 6 (CH1N...CH3N). If the defined output is less than 4, the normal output is enabled, otherwise the complementary output is enabled.
This change is required to support PWM on boards that have connected the complementary outputs of advanced timers to the PWM connector pins, for example the STM32L496-DISCO board.
### Testing procedure
- Green CI
- Use any STM32 board which supports the `periph_pwm` feature. `tests/periph_pwm` should still work.
- Change the configuration for this board so that either timer TIM1 or TIM8 and a complementary channel is used for any exposed GPIO. `tests/periph_pwm` should also work with such a configuration.
### Issues/PRs references
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
The current implementation uses the core clock frequency to calculate
the needed prescalar to achieve a given ADC clock frequency. This is
incorrect. This patch fixes the calculation to use the correct source
clock (PCKLK2 ie APB2). It also changes the defined max clock rate to
use the frequency macro to improve readability.
To use a complementary output of an advanced timer as PWM channel, the output is defined with an offset of 4, i.e. normal outputs are in the range of 0 to 3 (CH1...CH4) and complementary outputs are in the range of 4 to 6 (CH1N...CH3N). If the defined output is less than 4, the normal output is enabled, otherwise the complementary output is enabled.
18056: pkg/cmsis: use unique package for CMSIS headers, DSP and NN modules r=benpicco a=aabadie
19571: cpu/stm32/periph_adc: fixes and improvements for L4 support r=benpicco a=gschorcht
### Contribution description
This PR provides the following fixes and improvements for the `periph_adc` implementation for STM32L4.
- Support STM32L496AG added.
- Instead of defining the number of ADC devices for each MCU model, the number of ADC devices is determined from ADCx definitions in CMSIS header.
- MCU specific register/value defines are valid for all L4 MCUs, model based conditional compilation is removed.
- The ADC clock disable function is fixed using a counter. The counter is incremented in `prep` and decremented in `done`. The ADC clock is disabled if the counter becomes 0.
- For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ (if supported) by setting `VREFBUF_ENABLE=1`.
- The ASCR register is available and has to be set for all STM32L471xx, STM32L475xx, STM32L476xx, STM32L485xx and STM32L486xx MCUs. Instead of using the CPU model for conditional compilation, the CPU line is used to support all MCU of that lines.
- Setting of SQR1 is fixed. Setting the SQR1 did only work before because the `ADC_SRQ_L` is set to 0 for a sequence length of 1.
- Setting the `ADC_CCR_CKMODE` did only work for the reset state. It is now cleared before it is set. Instead of using the `ADC_CCR_CKMODE_x` bits to set the mode, the mode defines are used.
- Support for V_REFINT as ADC channel added.
### Testing procedure
19589: gnrc/gnrc_netif_hdr_print: printout timestamp if enabled r=aabadie a=chudov
Co-authored-by: Alexandre Abadie <alexandre.abadie@inria.fr>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: chudov <chudov@gmail.com>
Setting the `ADC_CCR_CKMODE` did only work for the reset state. It is now cleared before it is set. Instead of using the `ADC_CCR_CKMODE_x` bits to set the mode, the mode defines are used.
19573: cpu/stm32/periph_dac: small improvements r=maribu a=gschorcht
### Contribution description
This PR provides the following improvements for `periph_dac` on STM32
- Support for `RCC_APB1ENR1_DAC1EN` symbol added.
- For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ (if supported) by setting `VREFBUF_ENABLE=1`.
- If the DAC peripheral has a mode register (`DAC_MCR`), it is set to normal mode with buffer enabled and connected to external pin and on-chip peripherals. This allows to measure the current value of a DAC channel with an ADC channel or to use the DAC channel also for other on-chip peripherals.
### Testing procedure
- Green CI
- `tests/periph_dac` should still work for any board supporting the `periph_dac` feature.
### Issues/PRs references
19579: doc/doxygen/src/flashing.md: work around Doxygen bug r=maribu a=maribu
### Contribution description
Doxygen fails to render inline code in headers correctly in the version the CI uses. So, work around the issue by not typestetting `stm32flash` as inline code but as regular text.
19583: tests: move cpu related applications to tests/cpu r=maribu a=aabadie
19584: tests/build_system/external_board_dirs: fix broken symlinks r=maribu a=aabadie
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Co-authored-by: Alexandre Abadie <alexandre.abadie@inria.fr>
The ASCR register is available and has to be set for all STM32L471xx, STM32L475xx, STM32L476xx, STM32L485xx and STM32L486xx MCUs. Instead of using the CPU model for conditional compilation, the CPU line is used to support all MCU of that lines.
For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ if supported by setting `VREFBUF_ENABLE=1`.
The ADC clock disable is fixed using a counter. The counter is incremented in `prep` and decremented in `done`. The ADC clock is disabled if the counter becomes 0.
If the DAC peripheral has a mode register (DAC_MCR), it is set to normal mode with buffer enabled and connected to external pin and on-chip peripherals. This allows to measure the current value of a DAC channel or to use the DAC channel also for other on-chip peripherals.
For boards that have not connected the V_REF+ pin to an external reference voltage, the VREFBUF peripheral can be used as V_REF+ if supported by setting `VREFBUF_ENABLE=1`.
PU/PD configuration has to be `0b00` for analog outputs which is corresponds to the reset state. However, if the GPIO is not in reset state but was used digital input/output with any pull resistor, the PU/PD configuration has also to be reset to work as ADC channel.
The current implmentation right shifted the 16 bit value passed into
`dac_set()` down to the 12 bits that the DAC is actually capable of.
This patch drops the shift and instead writes the 16 bit value to the
DAC's left aligned 12 bit wide data holding register.
19460: cpu/stm32/usbdev_fs: fix ep registration and EP_REG assignments r=gschorcht a=dylad
### Contribution description
This PR provides two fixes for the `usbdev_fs` driver:
- Fix endpoints registration
- Fix assignment of toggleable bits in EP_REG(x) registers
These bugs were encountered with the USBUS MSC implementation.
Regarding the endpoints registration:
For the `usbdev_fs` peripheral, IN and OUT endpoints of the same index must have the same type.
For instance, if EP1 OUT is a bulk endpoint, EP1 IN must either be unused or used as bulk too but it cannot be used as interrupt or isochronous.
With the previous check, the following registration pattern (EP OUT Bulk -> EP IN Interrupt -> EP IN Bulk) would assign both EP OUT Bulk and EP IN Interrupt to same endpoint index. So the configuration would be broken.
Applying the same registration pattern with this patch would now produce EP OUT Bulk -> 1 / EP IN Interrupt -> 2 / EP IN Bulk 1. Which is a working configuration for this IP.
and for the second fix:
EP_REG(x) registers have a total of 6 toggleable bits. Those bits can only be toggled if we write a one to it, otherwise writing a zero has no effect
This commit fixes all the access to these registers to prevent from modifying these bits when not needed.
Without this patch, the endpoint status (VALID / NACK / STALL) can be erroneously modify because bits are not cleared when assigning the new content to the register and thus make the bits toggle and change values.
### Testing procedure
This can be tested with tests/usbus_msc on any board using this `usbdev_fs` driver.
It is easier to test this PR with #19443 alongside. Then the following would be enough:
`CFLAGS='-DSECTOR_COUNT=64' USEMODULE='mtd_emulated' make -j8 BOARD=p-nucleo-wb55 -C tests/usbus_msc flash`
Otherwise this can also be tested by attaching a SPI<->SDCARD adapter.
### Issues/PRs references
None.
Co-authored-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
EP_REG(x) registers have a total of 6 toggleable bits. Those bits can only be toggled if we write a one to it, otherwise writing a zero has no effect
This commit fixes all the access to these registers to prevent from modifying these bits when not needed
Signed-off-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
For the usbdev_fs peripheral, IN and OUT endpoints of the same index must have the same type.
For instance, if EP1 OUT is a bulk endpoint, EP1 IN must either be unused or used as bulk too but it cannot be used as interrupt or isochronous.
With the previous check, the following registration pattern (EP OUT Bulk -> EP IN Interrupt -> EP IN Bulk) would assign both EP OUT Bulk and EP IN Interrupt to same endpoint index. So the configuration would be broken.
Applying the same registration pattern with this patch would now produce EP OUT Bulk -> 1 / EP IN Interrupt -> 2 / EP IN Bulk 1. Which is a working configuration for this IP
Signed-off-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
The comments still claim STM32F1 support is missing, but this was
recently added.
Also, drop an empty line to fix `too many consecutive empty lines`
nitpick of the CI.
The driver previously failed to reliably clear the RXNE bit, resulting
in the next transfer to incorrectly read a stale register value. This
was noticed with the SD card SPI driver on an STM32F4, in which the
0xff byte of the previous byte transfer was returned instead of the
actual status byte, throwing the SD card driver off the rails.
The STM32 periph_timer driver reads the timer's status flags, then
clears them all. It is possible that a timer interrupt could occur
between reading the flag and clearing it. This would lead to a lost
interrupt.
The timer's status flags can be cleared by software, but can only be set
by the hardware. This patch takes advantage of this by only clearing the
flags it knows are set. The rest of the flags are set, which doesn't
actually change their state.
17086: usbdev: Add dedicated stall functions r=benpicco a=bergzand
### Contribution description
This PR adds dedicated stall functions for usbdev peripherals. Two
functions are added. The first function (usbdev_ep_stall) to enable and
disable the stall condition on generic endpoints. The second function is
a dedicated function to set the stall condition on endpoint zero in both
directions. This status can only be set and should automatically be
cleared by the usbdev implementation (or hardware) after a new setup
request is received from the host.
### Testing procedure
- examples/usbus_minimal should still enumerate correctly on the host side.
- #17085 can be used to demonstrate the ep0_stall function with the `tests/usbus_cdc_acm_stdio/` test
### Issues/PRs references
None
Co-authored-by: Koen Zandberg <koen@bergzand.net>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
The implmentation of `timer_set_absolute()` has The following problems.
First, it attempts to restore the auto reload register (ARR) to it's
default if the ARR was previosly set by `timer_set_periodic()` by
comparing it to the channel's capture compare (CC) register _after_ it
has already set the CC register. Secondly, it clears spurious IRQs
_after_ the CC register has been set. If the value being set is equal to
the timer's current count (or the two become equal before the supurios
IRQ clearing happens), this could cause a legitimate IRQ to be cleared.
The implmentation of `timer_set()` has the same error in handling the
ARR as described above.
This patch reorders the operations of both functions to do:
1. handle ARR
2. clear spurious IRQs
3. set channel's CC
4. enable IRQ
Additionally, the calulation of `value` in `timer_set()` is moved
earlier in the function's exec path as a pedantic measure.
If a timer's channel was set with a really small realtive duration from
now, such that it would be missed (underflowed), the driver would stop
the timer, potentially causing missed ticks. It was stopped to ensure
that the channel's output-compare register could be set to the current
counter value, before re-enabling the timer's counter. This is a
condition that will ensure that the underflow won't happen again and the
interrupt will fire, at the cost of losing some ticks for very high
speed clocks.
This patch replaces the logic that stopped the timer. Instead it uses a
register provided by the timer hardware to trigger timer interrupts via
software.
The macros CONCAT(), MIN(), and MAX() are defined over and over again in
RIOT's code base. This de-duplicates the code by moving the macros to a
common place.
Allow two threads to share the same timer - provided they use distinct
sets of timer channels - without occasionally corrupting registers or
state flags.
There are STM32 families where all models use only the Synopsys DWC2 USB OTG core while others completely use only the USB Device FS core. For these families then either the driver `drivers/usbdev_synopsys_dwc2` or the driver `cpu/stm32/periph/usbdev` is used depending on the respective family. However, the STM32 families F1 and L4 use both cores. The correct driver must therefore be selected depending on the CPU line or CPU model.
As implmented, dma_resume assumed that transfers widths were 1 byte and
that the memory address incrmenting was always on and periphial address
incrementing always off. This resulted in memory corruption anytime
these assumptions were not true and a dma was resumed. The DMA module
allows intitiating transfers that did not meet these assumption.
This patch adds proper handling inside dma_resume to safely resume any
transfer. Clearifications and errors are added/fixed in the module's
header file. Also, a few constants are removed from the gobal namespace.