Following best practice, this patch adds the module's header as its
first include. Resulting compiler errors are also fixed by adding the
header's missing include of cpu_conf.h.
This patch allows boards to select a max ADC clock speed. This could be
handy if the board wants to clock the ADC differently according to the
board's front end analog circuitry or MCU model's ADC capabilities.
This block of code inconsistently made use of else-if statments. The
patch makes the use consistent. The change also makes the code a bit
simpler to read.
APB12 is never defined as a macro. It is an element in the bus_t enum.
Therefore, the test to check if it is defined will always fail.
APB12 is not a real bus. It is the second register of the APB1 bus. I am
not aware of any STM32 family where the ABP2 bus is implmented (ie
RCC_APB2ENR_SYSCFGEN is defined) and devices attached to said bus are
enabled via the APB1 second register. For this reason, the fix is to
simply remove the check.
This patch removes a largely redundant block of conditional includes.
The removed includes are moved into the family specific headers so that
the more specific headers may override defaults defined in the shared
headers.
The register access to SMPR1/SMPR2 was incorrect in three aspects:
1. For channels < 10, SMPR1 was cleared but SMPR2 should have been
cleared
2. The code was not thread-safe
3. An unneeded write was issued. (The compiler won't combine the
in-place bitwise operations into a single read-modify-write
sequence on `volatile` memory.)
Fixes https://github.com/RIOT-OS/RIOT/issues/20261
The separate Schmitt trigger bit in the configuration is dropped, as
the Schmitt trigger is only every disabled when in `GPIO_DISCONNECT`
mode. So no need to encode the same information twice.
The `gpio_state_t` is improved to be a bitmask that holds the
MODER register value and a flag indicating whether open-drain mode
should be enabled.
Finally, `GPIO_DISCONNECT` is implemented. This is done by placing the
GPIO in analog mode, which by disabling the Schmitt trigger reduces
power consumption.
This adds the features
- periph_gpio_ll_input_pull_down:
To indicate support for input mode with internal pull down
- periph_gpio_ll_input_pull_keep:
To indicate support for input mode with internal resistor
pulling towards current level
- periph_gpio_ll_input_pull_up:
To indicate support for input mode with internal pull up
- periph_gpio_ll_disconnect:
To indicate a GPIO can be disconnected
- periph_gpio_ll_open_drain:
To indicate support for open drain mode
- periph_gpio_ll_open_drain_pull_up:
To indicate support for open drain mode with internal pull up
- periph_gpio_ll_open_source:
To indicate support for open source mode
- periph_gpio_ll_open_source_pull_down:
To indicate support for open source mode with internal pull down
This commit optimizes the `gpio_conf_t` type in the following
regards:
- The "base" `gpio_conf_t` is stripped from members that only some
platforms support, e.g. drive strength, slew rate, and disabling of
the Schmitt Trigger are no longer universally available but
platform-specific extensions
- The `gpio_conf_t` is now crammed into a bit-field that is 8 bit or
16 bit wide. This allows for storing lots of them e.g. in
`driver_foo_params_t` or `uart_conf_t` etc.
- A `union` of the `struct` with bit-field members and a `bits` is used
to allow accessing all bits in a simple C statement and to ensure
alignment for efficient handling of the type
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
The function configures additional features of the DMA stream for F2/F4/F7.
`dma_setup_ext` added to configure F2/F4/F7 specific additional features like `MBURST`, `PBURST`, `FIFO` and Peripheral flow controller. It is supposed to be used after `dma_setup` and `dma_prepare`.
- boot the I2C after init in low power mode
- otherwise I2C will consume more power until the first time it is
used, which is surprising
- STM32 F1 only: reconfigure SCL and SDA as GPIOs while the I2C
peripheral is powered down
- When the I2C peripheral is not clocked, it drives SCL and SDA
down. This will dissipate power across the pull up resistor.
With only 8 possible prescalers, we can just loop over the values
and shift the clock. In addition to being much easier to read, using
shifts over divisions can be a lot faster on CPUs without hardware
division.
In addition an `assert()` is added that checks if the API contract
regarding the SPI frequency is honored. If the requested clock is too
low to be generated, we should rather have a blown assertion than
hard to trace communication errors.
Finally, the term prescaler is used instead of divider, as divider may
imply that the frequency is divided by the given value n, but
in fact is divided by 2^(n+1).
Previously, the /CS signal was performed by enabling / disabling the
SPI peripheral. This had the disadvantage that clock polarity settings
where not applied starting with `spi_acquire()`, as assumed by e.g.
the SPI SD card driver, but only just before transmitting data.
Now the SPI peripheral is enabled on `spi_acquire()` and only disabled
when calling `spi_release()`, and the `SPI_CR2_SSOE` bit in the `CR2`
register is used for hardware /CS handling (as supposed to).
This doesn't change the firmware, since for all STM32 MCUs with an
SPI driver the register setting in the mode did match the SPI mode
number by chance. But for some STM32 MCUs with no SPI driver yet
the register layout is indeed different. This will help to provide an
SPI driver for them as well.