19766: core/lib: make the use of DEBUG_BREAKPOINT on assert optional r=gschorcht a=gschorcht
### Contribution description
This PR makes the use of `DEBUG_BREAKPOINT` on failed assertion optional.
The behavior of `assert` has been changed with PR #19368. Instead of printing some useful information, either a breakpoint is inserted and the execution of the MCU stops in debugger or a endless while loop is executed.
Before PR #19368 the user got on failed assertion:
```
Starting ESP32x with ID: 7cdfa1e36a34
ESP-IDF SDK Version v4.4.1-0-g1329b19fe49
...
*** RIOT kernel panic:
FAILED ASSERTION.
*** halted.
```
This was very helpful during development, especially to identify quickly the cause of problems with `DEBUG_ASSERT_VERBOSE` enabled, e.g. when misconfiguration led to failed assertions.
With PR #19368 the user gets an address in best case (or even `0` on platforms like ESP32), in worst case the MCU seems to stuck, e.g.
```
Starting ESP32x with ID: 7cdfa1e36a34
ESP-IDF SDK Version v4.4.1-0-g1329b19fe49
...
0
```
The problem with the new behavior is that
- a user doesn't get a quick indication of what happened
- there is not always an easy way to attach a debugger
This PR therefore makes the use of `DEBUG_BREAKPOINT` optional using `DEBUG_ASSERT_BREAKPOINT` define.
### Testing procedure
Add `assert(0)` in `examples/hello-world/main.c` and compile with and w/o `CFLAGS='-DDEBUG_ASSERT_BREAKPOINT'`.
With `DEBUG_ASSERT_BREAKPOINT` the execution should stop in `assert_failue`. Without `DEBUG_ASSERT_BREAKPOINT`, the information as generated before PR #19368 and the execution should stop in `panic_arch`.
### Issues/PRs references
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
19767: boards: Fix I2C Arduino mapping r=chrysn a=maribu
### Contribution description
The correct macro name is `ARDUINO_I2C_UNO` for Arduino UNO compatible I2C bus location, or `ARDUINO_I2C_NANO` for Arduino Nano compatible I2C bus location.
19768: sys/arduino: move pseudo modules to makefiles r=chrysn a=maribu
### Contribution description
This allows using the arduino_pwm feature (which is translated into a module) without the arduino module; e.g. for only using the Arduino I/O mapping but not the Arduino API.
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
This allows using the arduino_pwm feature (which is translated into a
module) without the arduino module; e.g. for only using the Arduino
I/O mapping but not the Arduino API.
The correct macro name is `ARDUINO_I2C_UNO` for Arduino UNO compatible
I2C bus location, or `ARDUINO_I2C_NANO` for Arduino Nano compatible
I2C bus location.
19759: boards,sys/arduino: major clean up r=maribu a=maribu
### Contribution description
- Rename all `arduino_pinmap.h` to `arduino_iomap.h`
- An empty `arduino_pinmap.h` that just includes `arduino_iomap.h` is provided for backward compatibility
- Move all info from `arduino_board.h` into the new file as trivial macros, so that they can also be used outside of sketches
- The new name reflects the fact not just pin mappings, but also other I/O features such as PWMs are mapped
- Drop all `arduino_board.h`
- `arduino_board.h` and `arduino_iomap.h` now provide the exact same information, just in a different format
- a generic `arduino_board.h` is provided instead that just uses the info in `arduinio_iomap.h` and provides them in the format the code in `sys/arduino` expects it
- Add fine grained features to indicate for mappings
- availability of mappings for analog pins, DAC pins, PWM pins, UART devices, SPI/I2C buses to the corresponding RIOT identification can now be expressed:
- `arduino_pins`: `ARDUINO_PIN_0` etc. are available
- `arduino_analog`: `ARDUINO_A0` etc. are available
- `arduino_pwm`: `ARDUINO_PIN_13_PWM_DEV` etc. are available
- `arduino_dac`: `ARDUINO_DAC0` etc. are available
- `arduino_uart`: `ARDUINO_UART_D0D1` or similar are available
- `arduino_spi`: `ARDUINO_SPI_ISP` or similar are available
- `arduino_i2c`: `ARDUINO_I2C_UNO` or similar are available
- mechanical/electrical compatibility with specific form factors can now be expressed as features:
- `aruino_shield_nano`: Arduino NANO compatible headers
- `aruino_shield_uno`: Arduino UNO compatible headers
- `aruino_shield_mega`: Arduino MEGA compatible headers
- `aruino_shield_isp`: ISP header is available
This provides the groundwork to implement shield support as modules that can rely on the I/O mappings, rather than having to provide a configuration per board.
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
- Rename all `arduino_pinmap.h` to `arduino_iomap.h`
- An empty `arduino_pinmap.h` that just includes `arduino_iomap.h`
is provided for backward compatibility
- Move all info from `arduino_board.h` into the new file as trivial
macros, so that they can also be used outside of sketches
- The new name reflects the fact not just pin mappings, but also
other I/O features such as PWMs are mapped
- Drop all `arduino_board.h`
- `arduino_board.h` and `arduino_iomap.h` now provide the exact
same information, just in a different format
- a generic `arduino_board.h` is provided instead that just
uses the info in `arduinio_iomap.h` and provides them in the
format the code in `sys/arduino` expects it
- Add fine grained features to indicate for mappings
- availability of mappings for analog pins, DAC pins, PWM pins,
UART devices, SPI/I2C buses to the corresponding RIOT
identification can now be expressed:
- `arduino_pins`: `ARDUINO_PIN_0` etc. are available
- `arduino_analog`: `ARDUINO_A0` etc. are available
- `arduino_pwm`: `ARDUINO_PIN_13_PWM_DEV` etc. are available
- `arduino_dac`: `ARDUINO_DAC0` etc. are available
- `arduino_uart`: `ARDUINO_UART_D0D1` or similar are available
- `arduino_spi`: `ARDUINO_SPI_ISP` or similar are available
- `arduino_i2c`: `ARDUINO_I2C_UNO` or similar are available
- mechanical/electrical compatibility with specific form factors
can now be expressed as features:
- `aruino_shield_nano`: Arduino NANO compatible headers
- `aruino_shield_uno`: Arduino UNO compatible headers
- `aruino_shield_mega`: Arduino MEGA compatible headers
- `aruino_shield_isp`: ISP header is available
This provides the groundwork to implement shield support as modules
that can rely on the I/O mappings, rather than having to provide a
configuration per board.
19761: buildsystem: only expose CPU_RAM_BASE & SIZE when known r=maribu a=maribu
### Contribution description
This gets rid of the following ugly warnings:
/bin/sh: 1: arithmetic expression: expecting primary: ""
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
19763: cpu/esp32: define RAM_START_ADDR and RAM_LEN r=maribu a=gschorcht
### Contribution description
This PR fixes the problem
```
/bin/sh: 1: arithmetic expression: expecting primary: ""
```
for ESP32x SoCs that was introduced with PR #19746. The reason for the error message was that `RAM_LEN` was not defined for ESP32x SoCs.
The solution is a bit tricky since ESP32x SoCs use a combination of SRAMs of different sizes and with different byte/word access requirements. Additionally, several hardware components such as the instruction cache or the Bluetooth controller share the RAM so that the start address and the size that is usable may differ depending on the hardware components used and configured parameters like the cache size a.s.o.
Therefore, the DRAM region parameters as defined in the memory layout of the linker scripts are used to define `RAM_START_ADDR` and `RAM_LEN` in `cpu/esp32/Makefile.include`. Some checks have been added to the linker scripts to ensure that the same parameters are used in the linker scripts and for `RAM_LEN` and `RAM_START_ADDR`. This is to ensure that none of the parameters are changed without generating an assertion.
**Note:** Since I don't know for what other purposes than the `riotboot` module these parameters might be relevant, I'm not sure if the values represent what they are supposed to.
### Testing procedure
Green CI with full compilation
### Issues/PRs references
Fixes PR #19746
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
19750: dist/tools/usb-serial: Fix handling of None while quoting r=aabadie a=maribu
### Contribution description
This fixes:
Traceback (most recent call last):
File "/home/maribu/Repos/software/RIOT/master/dist/tools/usb-serial/ttys.py", line 259, in <module>
print_ttys(sys.argv)
File "/home/maribu/Repos/software/RIOT/master/dist/tools/usb-serial/ttys.py", line 255, in print_ttys
print_results(args, ttys)
File "/home/maribu/Repos/software/RIOT/master/dist/tools/usb-serial/ttys.py", line 189, in print_results
if item.rfind(args.format_sep) >= 0:
^^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'rfind'
Which occurs while testing whether a string requires special quoting if an attribute is None.
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
This fixes:
Traceback (most recent call last):
File "/home/maribu/Repos/software/RIOT/master/dist/tools/usb-serial/ttys.py", line 259, in <module>
print_ttys(sys.argv)
File "/home/maribu/Repos/software/RIOT/master/dist/tools/usb-serial/ttys.py", line 255, in print_ttys
print_results(args, ttys)
File "/home/maribu/Repos/software/RIOT/master/dist/tools/usb-serial/ttys.py", line 189, in print_results
if item.rfind(args.format_sep) >= 0:
^^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'rfind'
Which occurs while testing whether a string requires special quoting
if an attribute is None.
19718: drivers/dht: busy wait reimplementation r=benpicco a=hugueslarrive
### Contribution description
In PR #19674, I also provided quick and dirty fixes to restore functionality on esp8266 and enable operation on AVR. While reviewing PR #18591, it became apparent to me that this driver needed a refresh, particularly its migration to ztimer.
The cause of the malfunction on esp8266 was that since the default switch to ztimer as the backend for xtimer, XTIMER_BACKOFF was no longer taken into account. Therefore, the correction I provided in PR #19674 simply made explicit what was previously done implicitly with xtimer and now needs to be done explicitly with ztimer (spinning instead of sleeping).
Moreover, it was unnecessarily complex to measure the pulse duration in a busy-wait implementation, which required 2 calls to ztimer_now() and 32-bit operations expensive on 8-bit architecture. Instead, it is sufficient to read the state of the bus at the threshold moment.
Finally, in practice, it is possible to reduce the read interval (down to less than 0.5s for DHT22) by "harassing" the DHT with start signals until it responds.
This re-implementation brings the following improvements:
- Many backports from `@maribu's` IRQ based implementation (#18591):
- Use of ztimer
- Use of errno.h
- Use of a dht_data structure to pass arguments, to facilitate integration
- Adaptation of the bit parsing technique to parse bits into the data array
- Reintroduction of DHT11/DHT22 differentiation.
- Separation of `dht_read()` steps into functions for better readability and the ability to share certain functions among different implementations
- Sensor presence check in `dht_init()`
- ~~Automatic adjustment to a minimum data hold time~~
- Default input mode changed to open drain (a pull-up resistor should be placed close to the output if necessary but not close to the input)
- AVR support without platform-specific handling by avoiding ztimer_spin() and using the overflow of an 8-bit variable as a pre-timeout to minimize time-consuming ztimer_now() calls
Regarding the changes in the start signal sequence and the removal of the `_reset()` function:
![nano_dht_read_2](https://github.com/RIOT-OS/RIOT/assets/67432403/95966813-2b5f-4a0f-a388-8ac630526ab2)
~~In the previous implementation, there was an unnecessary spike at the beginning of the signal sequence, corresponding to START_HIGH_TIME. This spike has been removed in the re-implementation, as it is unnecessary. Instead, the MCU now simply pulls the signal low for START_LOW_TIME and then releases the bus, which is sufficient for initiating communication with the DHT sensor.~~ Actually, it is necessary to raise the bus level; otherwise, the _wait_for_level() called immediately after to check the response of the DHT may read the port before the signal level is raised, resulting in a false positive.
Additionally, the previous implementation had an issue where the MCU switched back to output mode and went high immediately after reading the 40 bits of data. However, the DHT sensor was still transmitting 2 or 3 additional bytes of '0' at that point, causing a conflict. This issue has been resolved in the re-implementation:
![nano_dht_read_optimized](https://github.com/RIOT-OS/RIOT/assets/67432403/ff124839-5ec5-4df3-bab7-5348d8160a25)
~~Regarding the optimization for AVR, I have performed measurements of `_wait_for_level()` until timeout (85 loops):~~
~~- on esp8266-esp-12x: 264 µs, which is 3.11 µs per loop~~
~~- on nucleo-f303k8: 319 µs, which is 3.75 µs per loop~~
~~- on arduino-nano: 3608 µs, which is 42.45 µs per loop~~
~~Duration measurements on the Arduino Nano:~~
19737: dist/tools/openocd: start debug-server in background and wait r=benpicco a=fabian18
19746: buildsystem: Always expose CPU_RAM_BASE & SIZE flags r=benpicco a=Teufelchen1
### Contribution description
Hello 🐧
This moves the definition of `CPU_RAM_BASE/SIZE` from being only available in certain situation to be always available.
Reason for change is to simplify common code in the cpu folder.
In cooperation with `@benpicco`
### Testing procedure
Passing CI
### Issues/PRs references
First usage will be in the PMP driver. Although there is more code in RIOT that could be refactored to use these defines instead of hacks / hardcoded values.
Co-authored-by: Hugues Larrive <hlarrive@pm.me>
Co-authored-by: Fabian Hüßler <fabian.huessler@ml-pa.com>
Co-authored-by: Teufelchen1 <bennet.blischke@outlook.com>
- many backports from @maribu's IRQ based implementation (#18591)
- use of ztimer and errno.h
- separation of dht_read() steps into functions for better readability
- reintroduction of DHT11/DHT22 differentiation
- sensor presence checking in dht_init()
- default input mode changed to open drain
- AVR support without platform-specific handling by avoiding
ztimer_spin() and using the overflow of an 8-bit variable as a
pre-timeout to minimize time-consuming ztimer_now() calls
- add a new DHT11_2022 type for 0.01 °C resolution devices
- data caching removed
19743: tests/unittests: improve int size detection r=maribu a=maribu
### Contribution description
Deduce from the value of `INT_MAX` whether `int` is 16 bit or 32 bit, rather than check CPU names.
19744: tests: update tests for MSP430 CPU r=maribu a=maribu
### Contribution description
Using the builtin `__MSP430__` macro is fool-proof and stable even if one would try to rename and reorganize the MSP430 cpu code.
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@posteo.net>
Checking for overflow of integer addition by comparing against one of
the arguments of the addition does not work when the result of the
addition is automatically promoted to a larger type.
Fix by using an explicit cast to make sure that the result of the
addition is not implicitly converted to a larger type.