The modified version esptool.py from RTOS SDK that is required for flashing an image, is now placed in `dist/tools/esptool.py` and used directly from there. The advantage is that `esptool.py` hasn't to be installed explicitly anymore. Having RIOT is enough. The documentation is adapted accordingly. The oly prerequisite is that python and the pyserial module are installed.
In vendor startup code, initialization function were called as parameters of assert statement. With DEVELHELP, they are not called since the assert macro does nothing.
To make the migration progress to the new RTOS SDK easier, the new toolchain was renamed to xtensa-esp8266-elf. This makes it possible to have the new and the old toolchain installed in parallel.
If the WiFi module is used, a number of high priority tasks is created. To void priority collisions with netdev drivers, the number of priorities SCHED_PRIO_LEVELS has to be increased to 32. But in other cases, the default number should be used, also to keep automatic tests working.
cd1ce6b98d accidentally disabled generating documentation for
`xtimer_msg_*()` functions.
Always define those functions when building the documentation.
This imports the protocol parameters for Selective Fragment Recovery
(SFR). For the values I took some educated guesses based on my
experience with previous experimentation with fragment forwarding.
The defines currently are based on [draft v7].
[draft v7]: https://tools.ietf.org/html/draft-ietf-6lo-fragment-recovery-07#section-7.1
fixup! gnrc_sixlowpan_frag: initial import of SRF parameters
The driver can only be used with either 4 or 8 bit modes. Checking if the 5th pin is set in the configuration is enough the determine if 8bit mode should be used or not
The ATmega328p on a breadboard can have various frequencies depending on
the fuse settings and whether and which crystal is connected. Thus, finding a
fixed xtimer frequency that can be configured for every CPU core clock with the
available prescalers is not possible. Therefore, the fixed frequency is replaced
by a frequency depending on the CPU clock speed. For CPU clock frequency of
more than 4 MHz a prescaler of 64 will be chosen (same as on the Arduino Uno),
for 4 MHz and less a prescaler of 8 will be chosen.