For nRF52 J-Link was intended to be preferred as programmer over OpenOCD
when both are available, but falling back to OpenOCD when JLinkExe is
not found in `$PATH`. However, there was call the shell missing to
actually detect `JLinkExe`.
19037: sys/usb, pkg/tinyusb: move USB board reset from highlevel STDIO to CDC ACM r=dylad a=gschorcht
### Contribution description
The USB board reset function `usb_board_reset_coding_cb` can be used on any CDC-ACM interface, even if the CDC ACM interface is not used as high-level STDIO. Therefore, this PR provides the following changes:
- The call of the board reset function `usb_board_reset_coding_cb` from USBUS stack has been moved from the STDIO CDC ACM implementation to the CDC ACM implementation and is thus a feature of any USBUS CDC ACM interface which does not necessarily have to be used as highlevel STDIO.
- The call of the board reset function `usb_board_reset_coding_cb` from tinyUSB stack been moved from module `tinyusb_stdio_cdc_acm` to module `tinyusb_contrib` and is compiled in if the `tinyusb_class_cdc` module is used together the `tinyusb_device` module. Thus, it is now a feature of the tinyUSB CDC ACM interface, which does not necessarily have to be used as highlevel STDIO.
- The `usb_board_reset` module defines the `usb_board_reset_in_bootloader` function as a weak symbol to be used when reset in bootloader if no real implementation of this function is compiled in and the `riotboot_reset` module is not used. It only prints an error message that the reset in bootloader is not supported. This is necessary if the module `usb_board_reset` is used to be able to restart the board with an application via a USB CDC ACM interface, but the board's bootloader does not support the reset in bootloader feature.
- A test application has been added that either uses the highlevel STDIO `stdio_acm_cdc` or creates a CDC-ACM interface to enable board resets via USB. If the `usbus_dfu` module is used, it also initializes the DFU interface to be able to work together with the `riotboot_dfu` bootloader.
### Testing procedure
1. Use a board with a bootloader that supports the reset in bootloader via USB, but don't use the highlevel STDIO to check that it works with `usbus_cdc_acm`, for example:
```python
USEMODULE=stdio_uart BOARD=arduino-mkr1000 make -C tests/usb_board_reset flash
```
After reset in application with command
```python
stty -F /dev/ttyACM0 raw ispeed 600 ospeed 600 cs8 -cstopb ignpar eol 255 eof 255
```
command `dmesg` should give an output like the following with RIOT's test VID/PID:
```python
dmesg
[1745182.057403] usb 1-4.1.2: new full-speed USB device number 69 using xhci_hcd
[1745182.160386] usb 1-4.1.2: New USB device found, idVendor=1209, idProduct=7d01, bcdDevice= 1.00
[1745182.160390] usb 1-4.1.2: New USB device strings: Mfr=3, Product=2, SerialNumber=4
[1745182.160392] usb 1-4.1.2: Product: arduino-mkr1000
[1745182.160393] usb 1-4.1.2: Manufacturer: RIOT-os.org
[1745182.160395] usb 1-4.1.2: SerialNumber: 6B6C2CA5229020D8
[1745182.170982] cdc_acm 1-4.1.2:1.0: ttyACM0: USB ACM device
```
After reset in bootloader with command
```python
stty -F /dev/ttyACM0 raw ispeed 1200 ospeed 1200 cs8 -cstopb ignpar eol 255 eof 255
```
command `dmesg` should give an output like the following with vendor VID/PID:
```python
[1746220.443792] usb 1-4.1.2: new full-speed USB device number 70 using xhci_hcd
[1746220.544705] usb 1-4.1.2: New USB device found, idVendor=2341, idProduct=024e, bcdDevice= 2.00
[1746220.544708] usb 1-4.1.2: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[1746220.553471] cdc_acm 1-4.1.2:1.0: ttyACM0: USB ACM device
```
2. Test the same as in 1., but this time use the highlevel STDIO to check that there is no regression and it still works with `stdio_cdc_acm`, for example:
```python
BOARD=arduino-mkr1000 make -C tests/usb_board_reset flash
```
3. Use a board that supports `riotboot_dfu` but doesn't use the highlevel STDIO and flash the `riotboot_dfu` bootloader, for example:
```python
BOARD=stm32f429i-disc1 make -C bootloaders/riotboot_dfu flash term
```
Once the bootloader is flashed, command `dfu-util --list` should give something like the following:
```python
Found DFU: [1209:7d02] ver=0100, devnum=14, cfg=1, intf=0, path="1-2", alt=1, name="RIOT-OS Slot 1", serial="6591620BCB270283"
Found DFU: [1209:7d02] ver=0100, devnum=14, cfg=1, intf=0, path="1-2", alt=0, name="RIOT-OS Slot 0", serial="6591620BCB270283"
```
If the output gives only
```python
Found Runtime: [1209:7d00] ver=0100, devnum=123, cfg=1, intf=0, path="1-2", alt=0, name="RIOT-OS bootloader", serial="6591620BCB270283"
```
an application is already running in DFU Runtime mode. Use `dfu-util -e` to restart it in bootloader DFU mode.
Then flash the test application, for example:
```python
FEATURES_REQUIRED=riotboot USEMODULE='usbus_dfu riotboot_reset' \
BOARD=stm32f429i-disc1 make -C tests/usbus_board_reset PROGRAMMER=dfu-util riotboot/flash-slot0
```
Once the test application is flashed, command `dfu-util --list` should give:
```python
Found Runtime: [1209:7d00] ver=0100, devnum=123, cfg=1, intf=0, path="1-2", alt=0, name="RIOT-OS bootloader", serial="6591620BCB270283"
```
Now, use command
```python
stty -F /dev/ttyACM1 raw ispeed 600 ospeed 600 cs8 -cstopb ignpar eol 255 eof 255
```
to restart the board in application. Command `dfu-util --list` should give again the following:
```python
Found Runtime: [1209:7d00] ver=0100, devnum=123, cfg=1, intf=0, path="1-2", alt=0, name="RIOT-OS bootloader", serial="6591620BCB270283"
```
That is, the application is running in DFU Runtime mode. Then use command
```python
stty -F /dev/ttyACM1 raw ispeed 1200 ospeed 1200 cs8 -cstopb ignpar eol 255 eof 255
```
to restart the board in bootloader DFU mode. Command `dfu-util --list` should now give the following:
```python
Found DFU: [1209:7d02] ver=0100, devnum=50, cfg=1, intf=0, path="1-2", alt=1, name="RIOT-OS Slot 1", serial="7D156425A950A8EB"
Found DFU: [1209:7d02] ver=0100, devnum=50, cfg=1, intf=0, path="1-2", alt=0, name="RIOT-OS Slot 0", serial="7D156425A950A8EB"
```
That is, the bootloader is in DFU mode and another application can be flash.
4. After a hard reset of the board under 3., try the commands `reboot` and `bootloader`.
5. To check the same for tinyUSB, use the existing tinyUSB application with a CDC ACM interface and add module `usb_board_reset`, for example:
```python
USEMODULE=usb_board_reset BOARD=stm32f429i-disc1 make -C tests/pkg_tinyusb_cdc_msc flash term
```
After flashing, it should be possible to restart the application with command:
```python
stty -F /dev/ttyACM1 raw ispeed 600 ospeed 600 cs8 -cstopb ignpar eol 255 eof 255
```
When using command
```python
stty -F /dev/ttyACM1 raw ispeed 1200 ospeed 1200 cs8 -cstopb ignpar eol 255 eof 255
```
the following error message should be shown in terminal
```python
[cdc-acm] reset in bootloader is not supported
```
### Issues/PRs references
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
18756: drivers/usbdev_synopsys_dwc2: add EFM32 support r=chrysn a=gschorcht
### Contribution description
This PR provides the changes for the Synopsys USB OTG IP core DWC2 driver for EFM32 MCUs. It also provides the changes of the board definition for `stk3600` and `stk3700` for testing.
### Testing procedure
`tests/usbus_hid` should work on the EFM32 boards `stk3600` (EFM32LG family) and `stk3700` (EFM32GG family).
It is already tested for a `sltb009a` board (EFM32GG12 family).
### Issues/PRs references
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
The `tinyusb_device` feature introduced with PR #18689 has to be moved from `common/arduino-zero` definition to the `arduino-zero` definition because the common `arduino-zero` features are also used by `wemos-zero` which uses `highlevel_stdio` feature via the `stdio_cdc_acm` module.
weact-f4xcx boards have only a single USB-C connector that is used for `highlevel_stdio` via USBUS CDC ACM so that it conflicts with tinyUSB for the moment.
The `channels` member should not be set to the number of hardware
channels *n*, but to *n* - 1 instead. The last channel is implicitly
used in `timer_read()`. Hence out of *n* hardware channels, only *n* - 1
are available to the application.
This fixes a bug introduced by 4d02e15247
which incorrectly set the channel number to *n* rather than to
*n* - 1.
- All nRF52 timers support 32 bit mode, so use that
- All nRF52 timers support at least 4 channels, the timers NRF_TIMER3
and NRF_TIMER4 even support 6 channels.
- Add a warning that `TIMER_DEV(1)` is used by the IEEE 802.15.4 driver
The peripheral configuration has been completely reworked to resolve
pin conflicts while provided as much of the peripherals as possible.
The changes include:
- Move `I2C_DEV(0)` from PB6/PB7 to PB8/PB9 to solve pin conflict with
`QDEC_DEV(2)`.
- Use pins PB0, PB1, PB4, and PB5 for PWM instead PA8, PA9, PA10, and
PA11
- PA9 and PA10 is in pin conflict with `UART_DEV(0)` which is used
for stdio with `stdio_uart`, PA8 was in conflict with
`QDEC_DEV(0)`, PA11 was in conflict with USB D-
- Use PB6, PB7 as `QDEC_DEV(0)` (previously `QDEC_DEV(2)`), as this is
the only completely conflict free setting
- Use PB4/PB5 instead of PA6/PA7 for QDEC_DEV(1)
- This fixes a pin conflict with `SPI_DEV(0)` MISO (and
`ADC_LINE(4)`)
- Only provide QDEC at PB4/PB5 when PWM is not used to avoid conflict
- Only provide QDEC at PA8/PA9 when UART is not used to avoid conflict
- Use SPI2 (PB15, PB14, PB13, PB12) as `SPI_DEV(0)` instead of SPI1,
use SPI1 (PA7, PA6, PA5, PA4) as `SPI_DEV(1)`
- Only provide `SPI_DEV(1)` if the ADC is not in used to resolve a
pin conflict
- Move PB0 and PB1 at the end of the ADC lines (previously
`ADC_LINE(6)` and `ADC_LINE(7)`, now `ADC_LINE(8)` and `ADC_LINE(9)`)
- Only provide them when PWM is not in use (to resolve pin conflict
with PWM)
- Also do not provide them for the Blackpill boards, which are
missing pins PB0 and PB1 on the headers
To make life of users easier, a Pinout diagram with the new
configuration was added.
The `fs` in the file name means that on-chip FS PHY is configured for USB OTG HS. The file is renamed to `cfg_usb_otg_hs_phy_fs.h`
- to clarify that USB OTG HS is just configured with PHY FS and not HS and FS,
- to allow a configuration of USB OTG FS and HS in one file called `cfg_usb_otg_hs_fs.h` or whatever, and
- to allow a configuration of USB OTG HS with ULPI PHY in a file called `cfg_usb_otg_hs_phy_ulpi.h`.
f
- most were trivial
- missing group close or open
- extra space
- no doxygen comment
- name commad might open an implicit group
this hould also be implicit cosed but does not happen somtimes
- crazy: internal declared groups have to be closed internal
The inverted and non-inverted `LED<num>_ON` and `LED<num>_OFF` macros
are swapped. This didn't reveal in testing as the
`LED<num>_IS_INVERTED` macros where not properly evaluated, due to a
typo in the check. This fixes both.
Using `UART_DEV(0)` (UASRT1) for stdio allows to use the same TTL
adapter that is used for programming via `stm32flash` to be used for
serial, without re-wiring after flashing.
Let boards only define the port and pin number of each LEDs. The common
definitions in `stm32_leds.h` will provide `LED<x>_ON`, `LED<x>_OFF`,
`LED<x>_TOGGLE`, `LED<x>_PIN`, `LED<x>_MASK` and `LED<x>_PORT`.
In addition to code de-duplication, this also makes it easier to use
LEDs in GPIO LL, which can be beneficial for super low overhead
debugging output - e.g. when a bug is timing sensitive and `DEBUG()`
would spent to much time for stdio to reproduce a bug.
Only default to uniflash as default programmer if UNIFLASH_PATH is
set. If this isn't the case, `make flash` fails complaining about
missing `UNIFLASH_PATH` anyway.
This introduces KCONFIG_BOARD_CONFIG and KCONFIG_CPU_CONFIG variable for
boards and CPUs (including common directories) to add default
configuration files to be merged. The current approach, as it uses
Makefile.features, would include boards first, not allowing them to
override CPU configurations.
The peripheral register addresses are fixed, properly aligned addresses. Storing
them as uintptr_t makes live easier when casting them to helper structs, as no
intermediate cast to uintptr_t is needed to silence -Wcast-align.
The module silabs_pic depends on the feature periph_i2c. However, the
dependency resolution just selected the module implementing that
feature which bypasses feature checks.
This fixes the following error:
$ BOARD=arduino-mega2560 make -C tests/pkg_arduino_sdi_12/
[...]
[...]/RIOT/build/pkg/arduino_sdi_12/src/SDI12_boards.cpp:35:16: error: ‘preSDI12_TCCR2B’ defined but not used [-Werror=unused-variable
35 | static uint8_t preSDI12_TCCR2B;
The esp8266 CPU has actually two hardware UART peripherals. UART0 is
used by the boot ROM for flashing and serial output during boot,
typically at a baudrate of 74880 bps until the bootloader or application
sets the more standard 115200 baudrate. This UART0 device has two
possible pins for TXD, GPIO1 and GPIO2, which are both set to TXD by the
boot ROM. esp8266 modules will typically have GPIO1 labeled as the TX
pin, but it is possible to use GPIO2 for that purpose even while
flashing the device with esptool.py.
The second device, UART1, also has two options for TXD, GPIO2 and GPIO7,
and only one option for RXD, GPIO8. However, GPIO7 and GPIO8 are used
by the flash internally so those options are not very useful unless
maybe while running from IRAM with the flash disabled, for example for
a debugger over UART1.
This patch allows boards to override UART{0,1}_{R,T}XD in their
periph_conf.h to configure the uart selection. Defining UART1_TX will
make the UART_DEV(1) device available.
Tested with:
```CFLAGS='-DUART1_TXD=GPIO2' make -C tests/periph_uart BOARD=esp8266-esp-12x flash term```
* Connected one USB-UART to the standard GPIO1 and GPIO3 for flashing
and console. After flashing we see the manual test output at 115200
bps
* Connected a second USB-UART with RX to GPIO2 running at 74880.
Then run on the first console:
```
> init 1 74880
> send 1 hello
```
The word "hello" appears on the second UART connection.
Note that GPIO2 is used during boot for UART0's TX until the application
or bootloader set it to a regular GPIO, so some boot ROM messages at
74880 bps are visible. After running `init 1 74880` it is set to UART1's
TX.