1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32/cpu_init.c

373 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013 INRIA
* 2014 Freie Universität Berlin
* 2016 TriaGnoSys GmbH
* 2018 Kaspar Schleiser <kaspar@schleiser.de>
* 2018 OTA keys S.A.
*
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
2020-05-03 17:17:54 +02:00
* @ingroup cpu_stm32
* @{
*
* @file
* @brief Implementation of the kernel cpu functions
*
* @author Stefan Pfeiffer <stefan.pfeiffer@fu-berlin.de>
* @author Alaeddine Weslati <alaeddine.weslati@inria.fr>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Nick van IJzendoorn <nijzendoorn@engineering-spirit.nl>
* @author Víctor Ariño <victor.arino@zii.aero>
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Oleg Artamonov <oleg@unwds.com>
* @author Francisco Molina <francisco.molina@inria.cl>
*
* @}
*/
#include "cpu.h"
#include "stdio_base.h"
#include "stmclk.h"
#include "periph_cpu.h"
#include "periph/init.h"
2021-07-07 13:41:56 +02:00
#include "periph/gpio.h"
#include "board.h"
#include "pm_layered.h"
#if defined (CPU_FAM_STM32L4) || defined (CPU_FAM_STM32G4) || \
defined(CPU_FAM_STM32L5)
#define BIT_APB_PWREN RCC_APB1ENR1_PWREN
2020-05-03 22:22:10 +02:00
#elif defined (CPU_FAM_STM32G0)
#define BIT_APB_PWREN RCC_APBENR1_PWREN
#elif !defined(CPU_FAM_STM32MP1)
#define BIT_APB_PWREN RCC_APB1ENR_PWREN
#endif
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F2) || defined(CPU_FAM_STM32F3) || \
defined(CPU_FAM_STM32F4) || defined(CPU_FAM_STM32F7) || \
defined(CPU_FAM_STM32L1)
#define STM32_CPU_MAX_GPIOS (12U)
#if defined(CPU_FAM_STM32L1)
#define GPIO_CLK (AHB)
#define GPIO_CLK_ENR (RCC->AHBENR)
#define GPIO_CLK_ENR_MASK (0x0000FFFF)
#elif defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F3)
#define GPIO_CLK (AHB)
#define GPIO_CLK_ENR (RCC->AHBENR)
#define GPIO_CLK_ENR_MASK (0xFFFF0000)
2021-03-05 01:00:00 +01:00
#elif defined(CPU_FAM_STM32WL)
#define GPIO_CLK (AHB2)
#define GPIO_CLK_ENR (RCC->AHB2ENR)
#define GPIO_CLK_ENR_MASK (0x00000087)
#elif defined(CPU_FAM_STM32F2) || defined(CPU_FAM_STM32F4) || \
defined(CPU_FAM_STM32F7)
#define GPIO_CLK (AHB1)
#define GPIO_CLK_ENR (RCC->AHB1ENR)
#define GPIO_CLK_ENR_MASK (0x0000FFFF)
#elif defined(CPU_FAM_STM32F1)
#define GPIO_CLK (APB2)
#define GPIO_CLK_ENR (RCC->APB2ENR)
#define GPIO_CLK_ENR_MASK (0x000001FC)
#endif
#ifndef DISABLE_JTAG
#define DISABLE_JTAG 0
#endif
/**
* @brief Initialize gpio to AIN
*
* stm32f need to have all there pins initialized to AIN so the consumption
* of the input Schmitt trigger is saved when running in STOP mode.
*
* @see https://comm.eefocus.com/media/download/index/id-1013834
*/
static void _gpio_init_ain(void)
{
uint32_t ahb_gpio_clocks;
/* enable GPIO clock and save GPIO clock configuration */
ahb_gpio_clocks = GPIO_CLK_ENR & GPIO_CLK_ENR_MASK;
periph_clk_en(GPIO_CLK, GPIO_CLK_ENR_MASK);
/* switch all GPIOs to AIN mode to minimize power consumption */
for (uint8_t i = 0; i < STM32_CPU_MAX_GPIOS; i++) {
GPIO_TypeDef *port;
port = (GPIO_TypeDef *)(GPIOA_BASE + i*(GPIOB_BASE - GPIOA_BASE));
if (IS_GPIO_ALL_INSTANCE(port)) {
if (!DISABLE_JTAG) {
#if defined(CPU_FAM_STM32F1)
switch (i) {
/* preserve JTAG pins on PORTA and PORTB */
case 0:
port->CRL = GPIO_CRL_CNF;
port->CRH = GPIO_CRH_CNF & 0x000FFFFF;
break;
case 1:
port->CRL = GPIO_CRL_CNF & 0xFFF00FFF;
port->CRH = GPIO_CRH_CNF;
break;
default:
port->CRL = GPIO_CRL_CNF;
port->CRH = GPIO_CRH_CNF;
break;
}
#else /* ! defined(CPU_FAM_STM32F1) */
switch (i) {
/* preserve JTAG pins on PORTA and PORTB */
case 0:
port->MODER = 0xABFFFFFF;
break;
case 1:
port->MODER = 0xFFFFFEBF;
break;
default:
port->MODER = 0xFFFFFFFF;
break;
}
#endif /* defined(CPU_FAM_STM32F1) */
}
else {
#if defined(CPU_FAM_STM32F1)
port->CRL = GPIO_CRL_CNF;
port->CRH = GPIO_CRH_CNF;
#else
port->MODER = 0xFFFFFFFF;
#endif
}
}
}
/* restore GPIO clocks */
periph_clk_en(GPIO_CLK, ahb_gpio_clocks);
}
#endif
/**
* @brief get the value of a register in a glitch resistant fashion
*
* This very teniously avoids optimization, even optimized it's better than
* nothing but periodic review should establish that it doesn't get optimized.
*/
__attribute__((always_inline))
static inline uint32_t _multi_read_reg32(volatile uint32_t *addr, bool *glitch)
{
uint32_t value = *addr;
// cppcheck-suppress duplicateExpression
// cppcheck-suppress knownConditionTrueFalse
if (*addr != value || *addr != value) {
/* (reason: volatile pointer forces multiple reads for glitch resistance,
glitch may force different value) */
*glitch = true;
}
return value;
}
/**
* @brief Check RDP level is what the designer intended.
*
* RDP stands for "ReaDout Protection."
*
* The STM32L4 readout protection feature offers three levels of protection
* for all SRAM2 and Flash memory as well as the backup registers:
*
* - Level 0 (RDP0) means no protection. This is the factory default. Read,
* Write and Erase operations are permitted in the SRAM2 and Flash memory
* as well as the backup registers. Option bytes are changeable in Level 0.
*
* - Level 1 (RDP1) ensures read protection of the chips memories which
* includes the Flash memory and the backup registers as well as the SRAM2
* content. Whenever a debugger access is detected or Boot mode is not set
* to a Flash memory area, any access to the Flash memory, the backup
* registers or to the SRAM2 generates a system hard fault which blocks all
* code execution until the next power-on reset. Option bytes can still be
* modified in Level 1.
*
* - Level 2 (RDP2) provides the same protection features for the SRAM2,
* Flash memory and Backup registers as described for Level 1. However,
* there are three major differences. The JTAG/SWD debugger connection is
* disabled (even at the ST factory, to ensure that there are no
* backdoors), the Boot mode is forced to User Flash memory REGARDLESS of
* what the boot 0/1 settings are, and Level 2 is permanent. Once set to
* Level 2, there is no going back; RDP/WRP option bytes can no longer be
* changed, as well as ALL the other option bytes.
*
* By way of background, changing the level of RDP protection is only
* permitted when the current protection level is 1. Changing the protection
* level from '1' to '0' should automatically erase the entire user flash
* memory, SRAM2 and backup registers.
*
* The issue is that while Level 0 is 0xAA and Level 2 is 0xCC, Level 1 is any
* other number. So when OxCC is set and the chip is physically or
* electrically perturbed, flipping any bit will "fool" the CPU into thinking
* that it is in Level 1, allowing JTAG access and the changing of option
* bits.
*
* Think of this as a STM32-specific version of the Rowhammer attack.
*
* RDP may not be set correctly due to manufacturing error, glitch or
* intentional attack. It's done thrice to reduce the probablility of a
* glitch attack succeeding amongst all of the multireads desgned to make it
* tougher.
*
* This would be best served with a random delay at the beginning of the
* function. But a consistent strategy for all chips is tough.
*
* To set the RDP bytes, the J-Flash utility or the STM32 Unlock (from J-Link)
* utility, both provided by the manufacturer.
*
* You can also set the option bytes from code:
*
* 1. Unlock the option bytes by writing the correct keys to FLASH_OPTKEYR and
* clearing OPTLOCK
* 2. Set the desired option values in FLASH_OPTCR
* 3. Set OPTSTRT in FLASH_OPTCR
*
* This is the generic procedure for all option bytes. However, setting the
* RDP level in this fashion will immediately lock the CPU and force a reboot
* (and in some cases a clearing of the flash memory).
*/
/* RDP only defined for particular families. Kconfig sets this as necessary */
#if defined(STM32_OPTION_BYTES)
#ifndef CONFIG_STM32_RDP
#define CONFIG_STM32_RDP 0
#endif
static bool _rdp_ok(void)
{
if (CONFIG_STM32_RDP == 0) {
return true;
}
bool glitch = false;
uint32_t read1 = _multi_read_reg32(STM32_OPTION_BYTES, &glitch);
uint32_t read2 = _multi_read_reg32(STM32_OPTION_BYTES, &glitch);
uint32_t read3 = _multi_read_reg32(STM32_OPTION_BYTES, &glitch);
if (glitch) {
return false;
}
switch (CONFIG_STM32_RDP) {
case 1:
return GET_RDP(read1) == 0xAA ||
GET_RDP(read2) == 0xAA ||
GET_RDP(read3) == 0xAA;
case 2:
return GET_RDP(read1) != 0xCC ||
GET_RDP(read2) != 0xCC ||
GET_RDP(read3) != 0xCC;
default:
return false;
}
}
static void _rdp_check(void)
{
if (!_rdp_ok()) {
/* halt execution */
while (1) {
pm_set(0);
}
}
}
#endif /* STM32_OPTION_BYTES */
2021-07-07 13:41:56 +02:00
/**
* @brief Initialize HW debug pins for Sub-GHz Radio
*/
void _wlx5xx_init_subghz_debug_pins(void)
2021-07-07 13:41:56 +02:00
{
#if IS_ACTIVE(CONFIG_STM32_WLX5XX_SUBGHZ_DEBUG)
2021-07-07 13:41:56 +02:00
/* SUBGHZSPI Debug */
gpio_init(CPU_STM32WL_SUBGHZSPI_DEBUG_MOSIOUT, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZSPI_DEBUG_MOSIOUT,
CPU_STM32WL_SUBGHZSPI_DEBUG_MOSIOUT_AF);
gpio_init(CPU_STM32WL_SUBGHZSPI_DEBUG_MISOOUT, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZSPI_DEBUG_MISOOUT,
CPU_STM32WL_SUBGHZSPI_DEBUG_MISOOUT_AF);
gpio_init(CPU_STM32WL_SUBGHZSPI_DEBUG_SCKOUT, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZSPI_DEBUG_SCKOUT,
CPU_STM32WL_SUBGHZSPI_DEBUG_SCKOUT_AF);
gpio_init(CPU_STM32WL_SUBGHZSPI_DEBUG_NSSOUT, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZSPI_DEBUG_NSSOUT,
CPU_STM32WL_SUBGHZSPI_DEBUG_NSSOUT_AF);
/* Sub-GHz Radio Debug */
gpio_init(CPU_STM32WL_SUBGHZ_RF_BUSY, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZ_RF_BUSY,
CPU_STM32WL_SUBGHZ_RF_BUSY_AF);
gpio_init(CPU_STM32WL_SUBGHZ_DEBUG_RF_NRESET, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZ_DEBUG_RF_NRESET,
CPU_STM32WL_SUBGHZ_DEBUG_RF_NRESET_AF);
gpio_init(CPU_STM32WL_SUBGHZ_DEBUG_RF_SMPSRDY, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZ_DEBUG_RF_SMPSRDY,
CPU_STM32WL_SUBGHZ_DEBUG_RF_SMPSRDY_AF);
gpio_init(CPU_STM32WL_SUBGHZ_DEBUG_RF_LDORDY, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZ_DEBUG_RF_LDORDY,
CPU_STM32WL_SUBGHZ_DEBUG_RF_LDORDY_AF);
gpio_init(CPU_STM32WL_SUBGHZ_DEBUG_RF_HSE32RDY, GPIO_OUT);
gpio_init_af(CPU_STM32WL_SUBGHZ_DEBUG_RF_HSE32RDY,
CPU_STM32WL_SUBGHZ_DEBUG_RF_HSE32RDY_AF);
#endif
}
void cpu_init(void)
{
/* initialize the Cortex-M core */
cortexm_init();
/* enable PWR module */
2021-03-05 01:00:00 +01:00
#if !defined(CPU_FAM_STM32WB) && !defined(CPU_FAM_STM32MP1) && \
!defined(CPU_FAM_STM32WL)
periph_clk_en(APB1, BIT_APB_PWREN);
#endif
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \
defined(CPU_FAM_STM32F2) || defined(CPU_FAM_STM32F3) || \
defined(CPU_FAM_STM32F4) || defined(CPU_FAM_STM32F7) || \
defined(CPU_FAM_STM32L1)
_gpio_init_ain();
_rdp_check();
#endif
#if !defined(CPU_FAM_STM32MP1) || IS_USED(MODULE_STM32MP1_ENG_MODE)
/* initialize the system clock as configured in the periph_conf.h */
stmclk_init_sysclk();
#endif
#ifdef MODULE_PERIPH_DMA
/* initialize DMA streams */
dma_init();
#endif
/* initialize stdio prior to periph_init() to allow use of DEBUG() there */
stdio_init();
#ifdef STM32F1_DISABLE_JTAG
RCC->APB2ENR |= RCC_APB2ENR_AFIOEN;
AFIO->MAPR |= AFIO_MAPR_SWJ_CFG_JTAGDISABLE;
#endif
/* trigger static peripheral initialization */
periph_init();
2021-07-07 13:41:56 +02:00
if (IS_ACTIVE(CONFIG_STM32_WLX5XX_SUBGHZ_DEBUG)) {
_wlx5xx_init_subghz_debug_pins();
2021-07-07 13:41:56 +02:00
}
}