1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/kinetis/include/periph_cpu.h

886 lines
27 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015-2016 Freie Universität Berlin
* Copyright (C) 2017-2018 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_kinetis
* @{
*
* @file
* @brief CPU specific definitions for internal peripheral handling
*
2017-01-19 21:45:23 +01:00
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*/
#ifndef PERIPH_CPU_H
#define PERIPH_CPU_H
#include <stdint.h>
#include <stdbool.h>
#include "cpu.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef PORT_PCR_MUX
# define KINETIS_HAVE_PCR
#endif
#ifdef SIM_PINSEL_REG
# define KINETIS_HAVE_PINSEL
#endif
#ifdef ADC_CFG1_MODE_MASK
# define KINETIS_HAVE_ADC_K
#endif
#ifdef SPI_CTAR_CPHA_MASK
# define KINETIS_HAVE_MK_SPI
#endif
#ifdef LPTMR_CSR_TEN_MASK
# define KINETIS_HAVE_LPTMR
#endif
/**
2017-03-22 09:00:34 +01:00
* @name CPU specific gpio_t type definition
* @{
*/
#define HAVE_GPIO_T
typedef uint16_t gpio_t;
/** @} */
/**
* @brief Definition of a fitting UNDEF value
*/
#define GPIO_UNDEF (0xffff)
/**
* @brief Define a CPU specific GPIO pin generator macro
*/
#define GPIO_PIN(x, y) (((x + 1) << 12) | (x << 6) | y)
#ifdef SIM_UIDH_UID_MASK
/* Kinetis Cortex-M4 has a 128 bit SIM UID */
/**
* @brief Starting offset of CPU_ID
*/
#define CPUID_ADDR (&SIM->UIDH)
2017-03-22 09:00:34 +01:00
/**
* @brief Length of the CPU_ID in octets
*/
#define CPUID_LEN (16U)
#else /* defined(SIM_UIDH_UID_MASK) */
/* Kinetis Cortex-M0+ has a 96 bit SIM UID */
/**
* @brief Starting offset of CPU_ID
*/
#define CPUID_ADDR (&SIM->UIDMH)
/**
* @brief Length of the CPU_ID in octets
*/
#define CPUID_LEN (12U)
#endif /* defined(SIM_UIDH_UID_MASK) */
2016-02-29 17:37:30 +01:00
/**
* @brief Generate GPIO mode bitfields
*
* We use the following bits to encode the pin mode:
* - bit 0: 0 for pull-down or 1 for pull-up
2017-02-07 22:03:15 +01:00
* - bit 1: pull resistor enable (as configured in bit 0)
2016-02-29 17:37:30 +01:00
* - bit 5: OD enable
* - bit 7: output or input mode
*/
#define GPIO_MODE(pu, pe, od, out) (pu | (pe << 1) | (od << 5) | (out << 7))
/**
* @brief Define a CPU specific SPI hardware chip select line macro
*
* We simply map the 5 hardware channels to the numbers [0-4], this still allows
* us to differentiate between GPIP_PINs and SPI_HWSC lines.
*/
#define SPI_HWCS(x) (x)
/**
* @brief Kinetis CPUs have a maximum number of 5 hardware chip select lines
*/
#define SPI_HWCS_NUMOF (5)
/**
* @brief Define value for unused CS line
*/
#define SPI_CS_UNDEF (GPIO_UNDEF)
#ifndef DOXYGEN
/**
* @brief Overwrite the default spi_cs_t type definition
* @{
*/
#define HAVE_SPI_CS_T
typedef uint32_t spi_cs_t;
/** @} */
#endif
/**
2017-03-22 09:00:34 +01:00
* @name This CPU makes use of the following shared SPI functions
* @{
*/
2017-03-22 09:00:34 +01:00
#define PERIPH_SPI_NEEDS_TRANSFER_BYTE 1
#define PERIPH_SPI_NEEDS_TRANSFER_REG 1
#define PERIPH_SPI_NEEDS_TRANSFER_REGS 1
/** @} */
/**
* @brief Prevent shared timer functions from being used
*/
#define PERIPH_TIMER_PROVIDES_SET
/**
* @brief Only a single channel supported by the driver/hardware
*/
#define TIMER_CHANNEL_NUMOF 1
/**
* @name Kinetis power mode configuration
* @{
*/
2022-04-02 20:22:08 +02:00
#define PM_NUM_MODES (4U)
enum {
KINETIS_PM_LLS = 0,
KINETIS_PM_VLPS = 1,
KINETIS_PM_STOP = 2,
KINETIS_PM_WAIT = 3,
};
#if MODULE_PM_LAYERED
#include "pm_layered.h"
/**
* @brief pm_block iff pm_layered is used
*/
#define PM_BLOCK(x) pm_block(x)
/**
* @brief pm_unblock iff pm_layered is used
*/
#define PM_UNBLOCK(x) pm_unblock(x)
#else
/* ignore these calls when not using pm_layered */
#define PM_BLOCK(x)
#define PM_UNBLOCK(x)
#endif
/** @} */
#ifndef DOXYGEN
2016-02-29 17:37:30 +01:00
/**
2017-03-22 09:00:34 +01:00
* @name GPIO pin modes
2016-02-29 17:37:30 +01:00
* @{
*/
#define HAVE_GPIO_MODE_T
typedef enum {
GPIO_IN = GPIO_MODE(0, 0, 0, 0), /**< IN */
GPIO_IN_PD = GPIO_MODE(0, 1, 0, 0), /**< IN with pull-down */
GPIO_IN_PU = GPIO_MODE(1, 1, 0, 0), /**< IN with pull-up */
GPIO_OUT = GPIO_MODE(0, 0, 0, 1), /**< OUT (push-pull) */
GPIO_OD = GPIO_MODE(1, 0, 1, 1), /**< OD */
GPIO_OD_PU = GPIO_MODE(1, 1, 1, 1), /**< OD with pull-up */
} gpio_mode_t;
/** @} */
#endif /* ndef DOXYGEN */
2016-02-29 17:37:30 +01:00
#ifdef KINETIS_HAVE_PCR
/**
2017-03-22 09:00:34 +01:00
* @brief PORT control register bitmasks
*
* To combine values just aggregate them using a logical OR.
*/
typedef enum {
GPIO_AF_ANALOG = PORT_PCR_MUX(0), /**< use pin as analog input */
GPIO_AF_GPIO = PORT_PCR_MUX(1), /**< use pin as GPIO */
GPIO_AF_2 = PORT_PCR_MUX(2), /**< use alternate function 2 */
GPIO_AF_3 = PORT_PCR_MUX(3), /**< use alternate function 3 */
GPIO_AF_4 = PORT_PCR_MUX(4), /**< use alternate function 4 */
GPIO_AF_5 = PORT_PCR_MUX(5), /**< use alternate function 5 */
GPIO_AF_6 = PORT_PCR_MUX(6), /**< use alternate function 6 */
GPIO_AF_7 = PORT_PCR_MUX(7), /**< use alternate function 7 */
#ifdef PORT_PCR_ODE_MASK
GPIO_PCR_OD = (PORT_PCR_ODE_MASK), /**< open-drain mode */
#endif
GPIO_PCR_PD = (PORT_PCR_PE_MASK), /**< enable pull-down */
GPIO_PCR_PU = (PORT_PCR_PE_MASK | PORT_PCR_PS_MASK) /**< enable PU */
} gpio_pcr_t;
#endif /* KINETIS_HAVE_PCR */
#ifndef DOXYGEN
/**
2017-03-22 09:00:34 +01:00
* @name GPIO flank configuration values
* @{
*/
#ifdef KINETIS_HAVE_PCR
#define HAVE_GPIO_FLANK_T
typedef enum {
GPIO_RISING = PORT_PCR_IRQC(0x9), /**< emit interrupt on rising flank */
GPIO_FALLING = PORT_PCR_IRQC(0xa), /**< emit interrupt on falling flank */
GPIO_BOTH = PORT_PCR_IRQC(0xb), /**< emit interrupt on both flanks */
} gpio_flank_t;
#endif /* KINETIS_HAVE_PCR */
/** @} */
#endif /* ndef DOXYGEN */
/**
* @brief Available ports on the Kinetis family
*
2017-03-22 09:00:34 +01:00
* Not all CPUs have the full number of ports, see your CPU data sheet for pinout.
*/
enum {
PORT_A = 0, /**< port A */
PORT_B = 1, /**< port B */
PORT_C = 2, /**< port C */
PORT_D = 3, /**< port D */
PORT_E = 4, /**< port E */
PORT_F = 5, /**< port F */
PORT_G = 6, /**< port G */
GPIO_PORTS_NUMOF /**< overall number of available ports */
};
#ifndef DOXYGEN
/**
2017-03-22 09:00:34 +01:00
* @name ADC resolution values
* @{
*/
#define HAVE_ADC_RES_T
#ifdef KINETIS_HAVE_ADC_K
typedef enum {
ADC_RES_6BIT = (0xfe), /**< not supported */
ADC_RES_8BIT = ADC_CFG1_MODE(0), /**< ADC resolution: 8 bit */
ADC_RES_10BIT = ADC_CFG1_MODE(2), /**< ADC resolution: 10 bit */
ADC_RES_12BIT = ADC_CFG1_MODE(1), /**< ADC resolution: 12 bit */
ADC_RES_14BIT = (0xff), /**< ADC resolution: 14 bit */
ADC_RES_16BIT = ADC_CFG1_MODE(3) /**< ADC resolution: 16 bit */
} adc_res_t;
#endif /* KINETIS_HAVE_ADC_K */
/** @} */
#if defined(FTM_CnSC_MSB_MASK)
/**
* @brief Define the maximum number of PWM channels that can be configured
*/
#define PWM_CHAN_MAX (4U)
/**
* @name PWM mode configuration
* @{
*/
#define HAVE_PWM_MODE_T
typedef enum {
PWM_LEFT = (FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK), /**< left aligned */
PWM_RIGHT = (FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK), /**< right aligned */
PWM_CENTER = (FTM_CnSC_MSB_MASK) /**< center aligned */
} pwm_mode_t;
#endif /* defined(FTM_CnSC_MSB_MASK) */
#endif /* ndef DOXYGEN */
/**
2017-03-22 09:00:34 +01:00
* @brief UART transmission modes
*/
typedef enum {
/** @brief 8 data bits, no parity, 1 stop bit */
UART_MODE_8N1 = 0,
/** @brief 8 data bits, even parity, 1 stop bit */
2017-03-22 09:00:34 +01:00
#if defined(UART_C1_M_MASK) || DOXYGEN
/* LPUART and UART mode bits coincide, so the same setting for UART works on
* the LPUART as well */
UART_MODE_8E1 = (UART_C1_M_MASK | UART_C1_PE_MASK),
#elif defined(LPUART_CTRL_M_MASK)
/* For CPUs which only have the LPUART */
UART_MODE_8E1 = (LPUART_CTRL_M_MASK | LPUART_CTRL_PE_MASK),
#endif
/** @brief 8 data bits, odd parity, 1 stop bit */
2017-03-22 09:00:34 +01:00
#if defined(UART_C1_M_MASK) || DOXYGEN
UART_MODE_8O1 = (UART_C1_M_MASK | UART_C1_PE_MASK | UART_C1_PT_MASK),
#elif defined(LPUART_CTRL_M_MASK)
/* For CPUs which only have the LPUART */
UART_MODE_8O1 = (LPUART_CTRL_M_MASK | LPUART_CTRL_PE_MASK | LPUART_CTRL_PT_MASK),
#endif
} uart_mode_t;
#ifndef DOXYGEN
/**
2017-03-22 09:00:34 +01:00
* @name SPI mode bitmasks
* @{
*/
#ifdef KINETIS_HAVE_MK_SPI
#define HAVE_SPI_MODE_T
typedef enum {
2018-04-24 18:50:34 +02:00
#if defined(SPI_CTAR_CPHA_MASK)
SPI_MODE_0 = 0, /**< CPOL=0, CPHA=0 */
SPI_MODE_1 = (SPI_CTAR_CPHA_MASK), /**< CPOL=0, CPHA=1 */
SPI_MODE_2 = (SPI_CTAR_CPOL_MASK), /**< CPOL=1, CPHA=0 */
SPI_MODE_3 = (SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK) /**< CPOL=1, CPHA=1 */
2018-04-24 18:50:34 +02:00
#elif defined(SPI_C1_CPHA_MASK)
SPI_MODE_0 = 0, /**< CPOL=0, CPHA=0 */
SPI_MODE_1 = (SPI_C1_CPHA_MASK), /**< CPOL=0, CPHA=1 */
SPI_MODE_2 = (SPI_C1_CPOL_MASK), /**< CPOL=1, CPHA=0 */
SPI_MODE_3 = (SPI_C1_CPOL_MASK | SPI_C1_CPHA_MASK) /**< CPOL=1, CPHA=1 */
#endif
} spi_mode_t;
/** @} */
#endif /* KINETIS_HAVE_MK_SPI */
#endif /* ndef DOXYGEN */
/**
* @brief CPU specific ADC configuration
*/
typedef struct {
/**
* @brief ADC module
*/
ADC_Type *dev;
/**
* @brief pin to use
*
* Use GPIO_UNDEF non-muxed ADC pins, e.g. ADC0_DP, or for internal channels, e.g. Bandgap
*/
gpio_t pin;
/**
* @brief ADC channel
*
* Written as-is to ADCx_SC1x before conversion. This also decides
* single-ended or differential sampling, see CPU reference manual for ADCx_SC1x
*/
uint8_t chan;
/**
* @brief Hardware averaging configuration
*
* Written as-is to ADCx_SC3 before conversion, use @ref ADC_AVG_NONE and
* @ref ADC_AVG_MAX as a shorthand notation in the board configuration */
uint8_t avg;
} adc_conf_t;
/**
* @brief Disable hardware averaging
*/
#define ADC_AVG_NONE (0)
/**
* @brief Maximum hardware averaging (32 samples)
*/
#define ADC_AVG_MAX (ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(3))
#if defined(DAC0_BASE) && (DAC0_BASE != This_symbol_has_been_deprecated)
/**
* @brief CPU specific DAC configuration
*/
typedef struct {
DAC_Type *dev; /**< DAC device base pointer */
volatile uint32_t *scgc_addr; /**< Clock enable register, in SIM module */
uint8_t scgc_bit; /**< Clock enable bit, within the register */
} dac_conf_t;
#endif
/**
* @brief CPU specific timer PIT module configuration
*/
typedef struct {
/** Prescaler channel */
uint8_t prescaler_ch;
/** Counting channel, will be linked to the prescaler channel */
uint8_t count_ch;
} pit_conf_t;
#ifdef KINETIS_HAVE_LPTMR
/**
* @brief CPU specific timer LPTMR module configuration
*/
typedef struct {
/** LPTMR device base pointer */
LPTMR_Type *dev;
/** Input clock frequency */
uint32_t base_freq;
/** Clock source setting */
uint8_t src;
2017-04-15 14:57:02 +02:00
/** IRQn interrupt number */
uint8_t irqn;
} lptmr_conf_t;
#endif /* KINETIS_HAVE_LPTMR */
#ifdef FTM_CnSC_MSB_MASK
/**
* @brief PWM configuration structure
*/
typedef struct {
FTM_Type* ftm; /**< used FTM */
2017-01-25 14:18:21 +01:00
struct {
gpio_t pin; /**< GPIO pin used, set to GPIO_UNDEF */
uint8_t af; /**< alternate function mapping */
uint8_t ftm_chan; /**< the actual FTM channel used */
2017-01-25 14:18:21 +01:00
} chan[PWM_CHAN_MAX]; /**< logical channel configuration */
uint8_t chan_numof; /**< number of actually configured channels */
uint8_t ftm_num; /**< FTM number used */
#ifdef KINETIS_HAVE_PINSEL
volatile uint32_t *pinsel;
uint32_t pinsel_mask;
uint32_t pinsel_val;
#endif
} pwm_conf_t;
#endif
2018-05-29 21:30:25 +02:00
#ifndef DOXYGEN
#define HAVE_I2C_SPEED_T
typedef enum {
I2C_SPEED_LOW = 10000ul, /**< low speed mode: ~10 kbit/s */
I2C_SPEED_NORMAL = 100000ul, /**< normal mode: ~100 kbit/s */
I2C_SPEED_FAST = 400000ul, /**< fast mode: ~400 kbit/s */
I2C_SPEED_FAST_PLUS = 1000000ul, /**< fast plus mode: ~1000 kbit/s */
/* High speed is not supported without external hardware hacks */
I2C_SPEED_HIGH = 3400000ul, /**< high speed mode: ~3400 kbit/s */
} i2c_speed_t;
/**
* @name Use shared I2C functions
* @{
*/
#define PERIPH_I2C_NEED_READ_REG
#define PERIPH_I2C_NEED_READ_REGS
#define PERIPH_I2C_NEED_WRITE_REG
#define PERIPH_I2C_NEED_WRITE_REGS
/** @} */
#endif /* !defined(DOXYGEN) */
/**
* @brief I2C configuration structure
*/
typedef struct {
I2C_Type *i2c; /**< Pointer to hardware module registers */
gpio_t scl_pin; /**< SCL GPIO pin */
gpio_t sda_pin; /**< SDA GPIO pin */
uint32_t freq; /**< I2C module clock frequency, usually CLOCK_BUSCLOCK or CLOCK_CORECLOCK */
i2c_speed_t speed; /**< Configured bus speed, actual speed may be lower but never higher */
IRQn_Type irqn; /**< IRQ number for this module */
uint32_t scl_pcr; /**< PORT module PCR setting for the SCL pin */
uint32_t sda_pcr; /**< PORT module PCR setting for the SDA pin */
} i2c_conf_t;
/**
* @brief SPI module configuration options
*/
typedef struct {
SPI_Type *dev; /**< SPI device to use */
gpio_t pin_miso; /**< MISO pin used */
gpio_t pin_mosi; /**< MOSI pin used */
gpio_t pin_clk; /**< CLK pin used */
spi_cs_t pin_cs[SPI_HWCS_NUMOF]; /**< pins used for HW cs lines */
#ifdef KINETIS_HAVE_PCR
gpio_pcr_t pcr; /**< alternate pin function values */
#endif /* KINETIS_HAVE_PCR */
#ifdef KINETIS_HAVE_PINSEL
volatile uint32_t *pinsel;
uint32_t pinsel_mask;
uint32_t pinsel_val;
#endif
uint32_t simmask; /**< bit in the SIM register */
} spi_conf_t;
/**
* @brief Possible timer module types
*/
enum {
TIMER_PIT, /**< PIT */
#ifdef KINETIS_HAVE_LPTMR
TIMER_LPTMR, /**< LPTMR */
#endif /* KINETIS_HAVE_LPTMR */
};
/**
2017-03-22 09:00:34 +01:00
* @name Hardware timer type-specific device macros
2017-01-25 14:18:21 +01:00
* @{
*/
2017-03-22 09:00:34 +01:00
/** @brief Timers using PIT backend */
#define TIMER_PIT_DEV(x) (TIMER_DEV(0 + (x)))
#ifdef KINETIS_HAVE_LPTMR
2017-03-22 09:00:34 +01:00
/** @brief Timers using LPTMR backend */
#define TIMER_LPTMR_DEV(x) (TIMER_DEV(PIT_NUMOF + (x)))
#endif /* KINETIS_HAVE_LPTMR */
2017-01-25 14:18:21 +01:00
/** @} */
2021-06-11 18:00:16 +02:00
/**
* @name RTT configuration
* @{
*/
#define RTT_DEV (TIMER_LPTMR_DEV(0))
#define RTT_MAX_VALUE (0x0000ffff)
#define RTT_CLOCK_FREQUENCY (32768U) /* in Hz */
#define RTT_MAX_FREQUENCY (32768U) /* in Hz */
#define RTT_MIN_FREQUENCY (1U) /* in Hz */
#ifndef RTT_FREQUENCY
#define RTT_FREQUENCY RTT_MAX_FREQUENCY
#endif
#if IS_USED(MODULE_PERIPH_RTT)
2021-06-11 18:00:16 +02:00
/* On kinetis periph_rtt is built on top on an LPTIMER so if used it
will conflict with xtimer, if a LPTIMER backend and RTT are needed
consider using ztimer */
#define KINETIS_XTIMER_SOURCE_PIT 1
#endif
/* When setting a new compare value, the value must be at least 5 more
than the current sleep timer value. Otherwise, the timer compare
event may be lost. */
/** @} */
/**
* @brief UART hardware module types
*/
typedef enum {
KINETIS_UART, /**< Kinetis UART module type */
KINETIS_LPUART, /**< Kinetis Low-power UART (LPUART) module type */
} uart_type_t;
2017-04-05 11:48:34 +02:00
/**
* @brief UART module configuration options
*/
typedef struct {
void *dev; /**< Pointer to module hardware registers */
2017-04-15 14:57:02 +02:00
uint32_t freq; /**< Module clock frequency, usually CLOCK_CORECLOCK or CLOCK_BUSCLOCK */
gpio_t pin_rx; /**< RX pin, GPIO_UNDEF disables RX */
gpio_t pin_tx; /**< TX pin */
#ifdef KINETIS_HAVE_PCR
2017-04-15 14:57:02 +02:00
uint32_t pcr_rx; /**< Pin configuration register bits for RX */
uint32_t pcr_tx; /**< Pin configuration register bits for TX */
#endif
#ifdef KINETIS_HAVE_PINSEL
volatile uint32_t *pinsel;
uint32_t pinsel_mask;
uint32_t pinsel_val;
#endif
2017-04-15 14:57:02 +02:00
IRQn_Type irqn; /**< IRQ number for this module */
volatile uint32_t *scgc_addr; /**< Clock enable register, in SIM module */
uint8_t scgc_bit; /**< Clock enable bit, within the register */
uart_mode_t mode; /**< UART mode: data bits, parity, stop bits */
uart_type_t type; /**< Hardware module type (KINETIS_UART or KINETIS_LPUART)*/
2017-04-05 11:48:34 +02:00
} uart_conf_t;
#if !defined(KINETIS_HAVE_PLL) && defined(MODULE_PERIPH_MCG) \
&& defined(MCG_C6_PLLS_MASK) || DOXYGEN
/**
* @brief Defined to 1 if the MCG in this Kinetis CPU has a PLL
*/
#define KINETIS_HAVE_PLL 1
#else
#define KINETIS_HAVE_PLL 0
#endif
#ifdef MODULE_PERIPH_MCG_LITE
/**
* @brief Kinetis possible MCG modes
*/
typedef enum kinetis_mcg_mode {
KINETIS_MCG_MODE_LIRC8M = 0, /**< LIRC 8 MHz mode*/
KINETIS_MCG_MODE_HIRC = 1, /**< HIRC 48 MHz mode */
KINETIS_MCG_MODE_EXT = 2, /**< External clocking mode */
KINETIS_MCG_MODE_LIRC2M = 3, /**< LIRC 2 MHz mode */
KINETIS_MCG_MODE_NUMOF, /**< Number of possible modes */
} kinetis_mcg_mode_t;
#endif /* MODULE_PERIPH_MCG_LITE */
#ifdef MODULE_PERIPH_MCG
/**
* @brief Kinetis possible MCG modes
*/
typedef enum kinetis_mcg_mode {
KINETIS_MCG_MODE_FEI = 0, /**< FLL Engaged Internal Mode */
KINETIS_MCG_MODE_FEE = 1, /**< FLL Engaged External Mode */
KINETIS_MCG_MODE_FBI = 2, /**< FLL Bypassed Internal Mode */
KINETIS_MCG_MODE_FBE = 3, /**< FLL Bypassed External Mode */
KINETIS_MCG_MODE_BLPI = 4, /**< FLL Bypassed Low Power Internal Mode */
KINETIS_MCG_MODE_BLPE = 5, /**< FLL Bypassed Low Power External Mode */
#if KINETIS_HAVE_PLL
KINETIS_MCG_MODE_PBE = 6, /**< PLL Bypassed External Mode */
KINETIS_MCG_MODE_PEE = 7, /**< PLL Engaged External Mode */
#endif
KINETIS_MCG_MODE_NUMOF, /**< Number of possible modes */
} kinetis_mcg_mode_t;
/**
* @brief Kinetis MCG FLL multiplier settings
*/
typedef enum {
/** FLL multiplier = 640 */
KINETIS_MCG_FLL_FACTOR_640 = (MCG_C4_DRST_DRS(0)),
/** FLL multiplier = 732 */
KINETIS_MCG_FLL_FACTOR_732 = (MCG_C4_DRST_DRS(0) | MCG_C4_DMX32_MASK),
/** FLL multiplier = 1280 */
KINETIS_MCG_FLL_FACTOR_1280 = (MCG_C4_DRST_DRS(1)),
/** FLL multiplier = 1464 */
KINETIS_MCG_FLL_FACTOR_1464 = (MCG_C4_DRST_DRS(1) | MCG_C4_DMX32_MASK),
/** FLL multiplier = 1920 */
KINETIS_MCG_FLL_FACTOR_1920 = (MCG_C4_DRST_DRS(2)),
/** FLL multiplier = 2197 */
KINETIS_MCG_FLL_FACTOR_2197 = (MCG_C4_DRST_DRS(2) | MCG_C4_DMX32_MASK),
/** FLL multiplier = 2560 */
KINETIS_MCG_FLL_FACTOR_2560 = (MCG_C4_DRST_DRS(3)),
/** FLL multiplier = 2929 */
KINETIS_MCG_FLL_FACTOR_2929 = (MCG_C4_DRST_DRS(3) | MCG_C4_DMX32_MASK),
} kinetis_mcg_fll_t;
#endif /* MODULE_PERIPH_MCG */
#if defined(MODULE_PERIPH_MCG) || defined(MODULE_PERIPH_MCG_LITE)
/**
* @brief Kinetis FLL external reference clock range settings
*/
typedef enum {
KINETIS_MCG_ERC_RANGE_LOW = MCG_C2_RANGE0(0), /**< for 31.25-39.0625 kHz crystal */
KINETIS_MCG_ERC_RANGE_HIGH = MCG_C2_RANGE0(1), /**< for 3-8 MHz crystal */
KINETIS_MCG_ERC_RANGE_VERY_HIGH = MCG_C2_RANGE0(2), /**< for 8-32 MHz crystal */
} kinetis_mcg_erc_range_t;
/**
* @brief Clock generation configuration flags
*
* @see "Clock distribution -> High-Level device clocking diagram" in every
* Kinetis CPU reference manual
*/
typedef enum {
/**
* @brief Turn on OSC0 oscillator
*
* - If this flag is set, the OSC0 oscillator expects a crystal between
* the pins XTAL0 and EXTAL0, and the OSCCLK internal signal will be
* provided by OSC0.
* - If not set, the EXTAL0 pin will be used directly as the OSCCLK signal.
*/
KINETIS_CLOCK_OSC0_EN = (1 << 0),
/**
* @brief Turn on RTC oscillator
*
* - If this flag is set, the RTC oscillator expects a crystal between
* the pins XTAL32 and EXTAL32.
* - If not set, the EXTAL32 pin can be used as an external clock signal on
* certain CPU models.
*/
KINETIS_CLOCK_RTCOSC_EN = (1 << 1),
/**
* @brief Use the fast internal reference clock as MCGIRCLK signal
*
* This flag corresponds to the IRCS bit in the MCG_C2 register.
*
* @note This flag affects the clock frequency of the CPU when using the MCG
* in FBI, or BLPI clocking modes.
*
* @note This flag is ignored on MCG_Lite parts
*
* - If this flag is set, the fast internal reference clock (up to 4 MHz,
* depends on settings) will be routed to the MCGIRCLK internal clock signal.
* - If not set, the slow internal reference clock (32 kHz) will be routed to
* the MCGIRCLK internal clock signal. FBI and BLPI modes will clock the core
* at 32 kHz.
*/
KINETIS_CLOCK_USE_FAST_IRC = (1 << 2),
/**
* @brief Enable MCGIRCLK internal clock signal
*
* This flag corresponds to the IRCLKEN bit in the MCG_C1 register.
*
* - If this flag is set, the MCG will provide MCGIRCLK for use by other
* peripherals.
*/
KINETIS_CLOCK_MCGIRCLK_EN = (1 << 3),
/**
* @brief Enable MCGIRCLK signal during STOP modes
*
* This flag corresponds to the IREFSTEN bit in the MCG_SC register.
*
* - If this flag is set, MCGIRCLK internal clock signal will be available
* for clocking peripherals during CPU STOP modes.
* - If not set, the MCGIRCLK internal clock signal will be stopped during
* CPU STOP modes.
*/
KINETIS_CLOCK_MCGIRCLK_STOP_EN = (1 << 4),
/**
* @brief Enable MCGPCLK (HIRC) internal clock signal
*
* This flag corresponds to the HIRCEN bit in the MCG_MC register.
*
* This clock source is only available on MCG_Lite parts
*
* - If this flag is set, the MCG will provide MCGPCLK for use by other
* peripherals.
*/
KINETIS_CLOCK_MCGPCLK_EN = (1 << 5),
} kinetis_clock_flags_t;
/**
* @brief Clock configuration for Kinetis CPUs
*/
typedef struct {
/**
* @brief Clock divider bitfield setting
*
* The value will be written to the SIM_CLKDIV1 hardware register without
* any transformation. Use the SIM_CLKDIV1_OUTDIVx() macros to ensure the
* proper bit shift for the chosen divider settings.
*
* @see CPU reference manual, SIM_CLKDIV1
*/
uint32_t clkdiv1;
/**
* @brief RTC oscillator Capacitor Load Configuration bits
*
* The bits will be passed directly to the RTC_CR register without any
* transformation, i.e. the SC16P bit is (unintuitively) at bit position 10,
* SC8P is at position 11, and so on (see details in the reference manual).
* Use the RTC_CR_SCxP_MASK macros to avoid accidentally reversing the bits
* here.
*
* @see CPU reference manual, RTC_CR[SCxP]
*/
uint32_t rtc_clc;
/**
* @brief ERCLK32K 32 kHz reference selection
*
* The bits will be passed directly to the SIM_SOPT1 register without any
* transformation, use the SIM_SOPT1_OSC32KSEL() macro to ensure the proper
* bit shift for the chosen setting.
*
* This signal is the input clock to the RTC module on some CPUs and an input
* option for the LPTMRx modules. On other CPUs the RTC is clocked directly
* by the RTC oscillator output without passing through this clock multiplexer.
*
* @see CPU reference manual, SIM_SOPT1[OSC32KSEL]
*/
uint32_t osc32ksel;
/**
* @brief Flags which will enable various clocking options at init
*
* @see @ref kinetis_clock_flags_t
*/
unsigned int clock_flags;
/**
* @brief MCG mode used after initialization
*
* @see @ref kinetis_mcg_mode_t
*/
kinetis_mcg_mode_t default_mode;
/**
* @brief ERC range setting
*
* @see @ref kinetis_mcg_erc_range_t
*/
kinetis_mcg_erc_range_t erc_range;
/**
* @brief OSC0 Capacitor Load Configuration bits
*
* The bits will be passed directly to the OSC_CR register without any
* transformation, i.e. the SC16P bit is (unintuitively) the LSB, SC8P is
* the next bit, and so on (see details in the reference manual). Use the
* OSC_CR_SCxP_MASK macros to avoid accidentally reversing the bits here.
*
* @see CPU reference manual, OSC_CR[SCxP]
*/
uint8_t osc_clc;
#ifdef MODULE_PERIPH_MCG
/**
* @brief MCG external reference oscillator selection
*
* The bits will be passed directly to the MCG_C7 register without any
* transformation, use the MCG_C7_OSCSEL() macro to ensure the proper bit
* shift for the chosen setting.
*
* @see CPU reference manual, MCG_C7[OSCSEL]
*/
uint8_t oscsel;
#endif /* MODULE_PERIPH_MCG */
/**
* @brief Fast internal reference clock divider
*
* This field is also known as LIRC_DIV1 on MCG_Lite parts.
*
* The bits will be passed directly to the MCG_SC register without any
* transformation, use the MCG_SC_FCRDIV() macro to ensure the proper bit
* shift for the chosen setting.
*
* @see CPU reference manual, MCG_SC[FCRDIV]
*/
uint8_t fcrdiv;
#ifdef MODULE_PERIPH_MCG_LITE
/**
* @brief LIRC second clock divider
*
* The bits will be passed directly to the MCG_MC register without any
* transformation, use the MCG_MC_LIRC_DIV2() macro to ensure the proper bit
* shift for the chosen setting.
* This divider only affects the MCGIRCLK output, it does not affect the
* core frequency when running the MCU in a LIRC clocking mode.
*
* @see CPU reference manual, MCG_MC[LIRC_DIV2]
*/
uint8_t lirc_div2;
#else
/**
* @brief FLL ERC divider setting
*
* The bits will be passed directly to the MCG_C1 register without any
* transformation, use the MCG_C1_FRDIV() macro to ensure the proper bit
* shift for the chosen setting.
*
* @see CPU reference manual, MCG_C1[FRDIV]
*/
uint8_t fll_frdiv;
/**
* @brief FLL multiplier when running in FEI mode
*
* @see @ref kinetis_mcg_fll_t
* @see CPU reference manual, MCG_C4[DMX32, DRST_DRS]
*/
kinetis_mcg_fll_t fll_factor_fei;
/**
* @brief FLL multiplier when running in FEE mode
*
* @see @ref kinetis_mcg_fll_t
* @see CPU reference manual, MCG_C4[DMX32, DRST_DRS]
*/
kinetis_mcg_fll_t fll_factor_fee;
#if KINETIS_HAVE_PLL
/**
* @brief PLL ERC divider setting
*
* The bits will be passed directly to the MCG_C5 register without any
* transformation, use the MCG_C5_PRDIV0() macro to ensure the proper bit
* shift for the chosen setting.
*
* @see CPU reference manual, MCG_C5[PRDIV0]
*/
uint8_t pll_prdiv;
/**
* @brief PLL VCO divider setting
*
* The bits will be passed directly to the MCG_C6 register without any
* transformation, use the MCG_C6_VDIV0() macro to ensure the proper bit
* shift for the chosen setting.
*
* @see CPU reference manual, MCG_C6[VDIV0]
*/
uint8_t pll_vdiv;
#endif /* KINETIS_HAVE_PLL */
#endif /* MODULE_PERIPH_MCG */
} clock_config_t;
#endif /* MODULE_PERIPH_MCG || MODULE_PERIPH_MCG_LITE */
/**
* @brief CPU internal function for initializing PORTs
*
* @param[in] pin pin to initialize
* @param[in] pcr value for the PORT's PCR register
*/
void gpio_init_port(gpio_t pin, uint32_t pcr);
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CPU_H */
/** @} */