If esp_idf_heap is not used, implement calloc through a custom wrapper
function on top of malloc to add overflow detection, which is not
present in the newlib forks with xtensa support yet.
The esp8266 CPU has actually two hardware UART peripherals. UART0 is
used by the boot ROM for flashing and serial output during boot,
typically at a baudrate of 74880 bps until the bootloader or application
sets the more standard 115200 baudrate. This UART0 device has two
possible pins for TXD, GPIO1 and GPIO2, which are both set to TXD by the
boot ROM. esp8266 modules will typically have GPIO1 labeled as the TX
pin, but it is possible to use GPIO2 for that purpose even while
flashing the device with esptool.py.
The second device, UART1, also has two options for TXD, GPIO2 and GPIO7,
and only one option for RXD, GPIO8. However, GPIO7 and GPIO8 are used
by the flash internally so those options are not very useful unless
maybe while running from IRAM with the flash disabled, for example for
a debugger over UART1.
This patch allows boards to override UART{0,1}_{R,T}XD in their
periph_conf.h to configure the uart selection. Defining UART1_TX will
make the UART_DEV(1) device available.
Tested with:
```CFLAGS='-DUART1_TXD=GPIO2' make -C tests/periph_uart BOARD=esp8266-esp-12x flash term```
* Connected one USB-UART to the standard GPIO1 and GPIO3 for flashing
and console. After flashing we see the manual test output at 115200
bps
* Connected a second USB-UART with RX to GPIO2 running at 74880.
Then run on the first console:
```
> init 1 74880
> send 1 hello
```
The word "hello" appears on the second UART connection.
Note that GPIO2 is used during boot for UART0's TX until the application
or bootloader set it to a regular GPIO, so some boot ROM messages at
74880 bps are visible. After running `init 1 74880` it is set to UART1's
TX.
In I2C, clock stretching occurs when the controller stops driving SCL
down but the peripheral continues to drive SCL down until the value of
SDA that is expected to be set by the peripheral is ready. This allows a
peripheral to communicate at a high speed but introduce a delay in the
response (like an ACK or read) in some specific situations. Not all I2C
peripherals require I2C stretching, and in many cases SCL is only an
input to these peripherals.
Clock stretching is the only situation where a peripheral may drive down
SCL, which technically makes SCL an open-drain with a pull-up like SDA.
However, if clock stretching is not needed, SCL can be configured as an
output removing the need for a pull-up and specially, allowing to use
as SCL GPIO pins that otherwise have a pull-down connected. In
particular, GPIO15 in the ESP8266 requires an external pull-down during
boot for the ESP8266 to boot from the flash.
This patch allows a board to define `I2C_CLOCK_STRETCH` to 0 to disable
clock stretching and allowing to use GPIO15 as SCL.
- Add `WORD_ALIGNED` attribute to potentially unaligned allocations
- Use intermediate cast to `uintptr_t` to silence false positives of
`-Wcast-align`
This is an implementation of the ESP32 SoftAP mode using the
`esp_wifi_ap` pseudomodule.
Signed-off-by: Jean Pierre Dudey <jeandudey@hotmail.com>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
Declare sched_active_thread and sched_active_pid locally in the ESP code for
now. Once the code is cleaned up to no longer tap into scheduler internals but
use the API instead, those can be dropped again.
- Add libstdcpp feature to indicate a platform is providing a libstdc++
implementation ready for use
- The existing cpp feature now only indicates a working C++ toolchain without
libstdc++. (E.g. still useful for the Arduino compatibility layer.)
- Added libstdcpp as required feature were needed
- Added some documentation on C++ on RIOT
>All of them are features of each ESP SoC and have not to be configured by the
board definition.
Signed-off-by: Jean Pierre Dudey <jeandudey@hotmail.com>
Co-authored-by: Gunar Schorcht <gunar@schorcht.net>
There are common features that can be used by ESP32 as well as ESP8266, for example the `esp_wifi` module. To be able to test for any ESP SoC, feature `arch_esp` is introduced.
Flashing an ESP board first requires the creation of a flash image from the ELF file. This is realized in the `preflash` target. However, the `preflash` target only depends on the variable `BUILD_BEFORE_FLASH` but on the ELF file. Therefore, the variable `BUILD_BEFORE_FLASH` must be set to the ELF file to ensure that when using multiple make processes, the compilation of the ELF file is completed before the flash image is created.
GPIO32 and GPIO33 are used during boot to start an 32.768 kHz XTAL if it is connected to these GPIOs. If the 32.768 kHz XTAL is not connected, these pins can be used digital IO. However, the 32.678 kHz XTAL has to be disabled explicitly in this case. Furthermore, the handling of GPIOs greater than GPIO31 had to be fixed in I2C software implementation.
Due to stability reasons, the SoftAP interface of the WiFi module was always enabled in former versions even if only the station interface was used. Therefore the WiFi modem had to be always active and the SoC could not enter the modem sleep mode. Therefore, the SoftAP interface is only enabled when ESP-NOW is used.
The WiFi interface should be stopped before reboot or sleep. But stopping the WiFi interface disconnects an existing connection. Usually, esp_wifi_netdev tries to reconnect on an disconnect event. However, trying reconnect with a stopped WiFi interface may lead to a crash. Therefore, the stop event has to be handled.
To be able to define common configurations for all ESP CPUs, the CPU specific configuration cpu_conf.h has to include a common configuration. For that purpose cpu_conf.h in cpu/esp_common is renamed to cpu_conf_common.h and included in CPU specific configurations.