1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/stm32_common/periph/i2c_1.c

447 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (C) 2015 Jan Pohlmann <jan-pohlmann@gmx.de>
* 2017 we-sens.com
* 2018 Inria
* 2018 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32_common
* @ingroup drivers_periph_i2c
* @{
*
* @file
* @brief Low-level I2C driver implementation
*
2019-07-15 15:31:27 +02:00
* This driver supports the STM32 F0, F3, F7, L0, L4 & WB families.
* @note This implementation only implements the 7-bit addressing polling mode
* (for now interrupt mode is not available)
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
2019-10-23 21:13:54 +02:00
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Jan Pohlmann <jan-pohlmann@gmx.de>
* @author Aurélien Fillau <aurelien.fillau@we-sens.com>
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
* @author Kevin Weiss <kevin.weiss@haw-hamburg.de>
*
* @}
*/
#include <assert.h>
#include <stdint.h>
#include <errno.h>
#include "cpu.h"
#include "mutex.h"
#include "byteorder.h"
#include "cpu_conf_stm32_common.h"
#include "periph/i2c.h"
#include "periph/gpio.h"
#include "periph_conf.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define TICK_TIMEOUT (0xFFFF)
#define MAX_BYTES_PER_FRAME (256)
#define I2C_IRQ_PRIO (1)
#define I2C_FLAG_READ (I2C_READ << I2C_CR2_RD_WRN_Pos)
#define I2C_FLAG_WRITE (0)
#define CLEAR_FLAG (I2C_ICR_NACKCF | I2C_ICR_ARLOCF | I2C_ICR_BERRCF | I2C_ICR_ADDRCF)
/* static function definitions */
static inline void _i2c_init(I2C_TypeDef *i2c, uint32_t timing);
static int _write(I2C_TypeDef *i2c, uint16_t addr, const void *data,
size_t length, uint8_t flags, uint32_t cr2_flags);
static int _start(I2C_TypeDef *i2c, uint32_t cr2, uint8_t flags);
static int _stop(I2C_TypeDef *i2c);
static int _wait_isr_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags);
static inline int _wait_for_bus(I2C_TypeDef *i2c);
/**
* @brief Array holding one pre-initialized mutex for each I2C device
*/
static mutex_t locks[I2C_NUMOF];
void i2c_init(i2c_t dev)
{
assert(dev < I2C_NUMOF);
DEBUG("[i2c] init: initializing device\n");
mutex_init(&locks[dev]);
I2C_TypeDef *i2c = i2c_config[dev].dev;
periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
NVIC_SetPriority(i2c_config[dev].irqn, I2C_IRQ_PRIO);
NVIC_EnableIRQ(i2c_config[dev].irqn);
#if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F3)
/* Set I2CSW bits to enable I2C clock source */
RCC->CFGR3 |= i2c_config[dev].rcc_sw_mask;
#endif
DEBUG("[i2c] init: configuring pins\n");
/* configure pins */
gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU);
gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af);
gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU);
gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af);
DEBUG("[i2c] init: configuring device\n");
/* set the timing register value from predefined values */
i2c_timing_param_t tp = timing_params[i2c_config[dev].speed];
uint32_t timing = (( (uint32_t)tp.presc << I2C_TIMINGR_PRESC_Pos) |
( (uint32_t)tp.scldel << I2C_TIMINGR_SCLDEL_Pos) |
( (uint32_t)tp.sdadel << I2C_TIMINGR_SDADEL_Pos) |
( (uint16_t)tp.sclh << I2C_TIMINGR_SCLH_Pos) |
tp.scll);
_i2c_init(i2c, timing);
}
static void _i2c_init(I2C_TypeDef *i2c, uint32_t timing)
{
assert(i2c != NULL);
/* disable device */
i2c->CR1 &= ~(I2C_CR1_PE);
/* configure analog noise filter */
i2c->CR1 |= I2C_CR1_ANFOFF;
/* configure digital noise filter */
i2c->CR1 |= I2C_CR1_DNF;
/* set timing registers */
i2c->TIMINGR = timing;
/* configure clock stretching */
i2c->CR1 &= ~(I2C_CR1_NOSTRETCH);
/* Clear interrupt */
i2c->ICR |= CLEAR_FLAG;
/* enable device */
i2c->CR1 |= I2C_CR1_PE;
}
int i2c_acquire(i2c_t dev)
{
assert(dev < I2C_NUMOF);
mutex_lock(&locks[dev]);
periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
return 0;
}
void i2c_release(i2c_t dev)
{
assert(dev < I2C_NUMOF);
periph_clk_dis(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
mutex_unlock(&locks[dev]);
}
int i2c_write_regs(i2c_t dev, uint16_t addr, uint16_t reg,
const void *data, size_t len, uint8_t flags)
{
assert(dev < I2C_NUMOF);
if (flags & (I2C_NOSTOP | I2C_NOSTART)) {
return -EOPNOTSUPP;
}
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
DEBUG("[i2c] write_regs: Starting\n");
/* As a higher level function we know the bus should be free */
if (i2c->ISR & I2C_ISR_BUSY) {
return -EAGAIN;
}
/* Handle endianness of register if 16 bit */
if (flags & I2C_REG16) {
reg = htons(reg); /* Make sure register is in big-endian on I2C bus */
}
/* First set ADDR and register with no stop */
/* No RELOAD should be set so repeated start is valid */
int ret = _write(i2c, addr, &reg, (flags & I2C_REG16) ? 2 : 1,
flags | I2C_NOSTOP, I2C_CR2_RELOAD);
if (ret < 0) {
return ret;
}
/* Then get the data from device */
return _write(i2c, addr, data, len, I2C_NOSTART, 0);
}
int i2c_read_bytes(i2c_t dev, uint16_t address, void *data,
size_t length, uint8_t flags)
{
assert(dev < I2C_NUMOF && length < MAX_BYTES_PER_FRAME);
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
/* If reload was set, cannot send a repeated start */
if ((i2c->ISR & I2C_ISR_TCR) && !(flags & I2C_NOSTART)) {
return -EOPNOTSUPP;
}
DEBUG("[i2c] read_bytes: Starting\n");
/* RELOAD is needed because we don't know the full frame */
int ret = _start(i2c, (address << 1) | (length << I2C_CR2_NBYTES_Pos) |
I2C_CR2_RELOAD | I2C_FLAG_READ, flags);
if (ret < 0) {
return ret;
}
for (size_t i = 0; i < length; i++) {
/* wait for transfer to finish */
DEBUG("[i2c] read_bytes: Waiting for DR to be full\n");
ret = _wait_isr_set(i2c, I2C_ISR_RXNE, flags);
if (ret < 0) {
return ret;
}
/* read data from data register */
((uint8_t*)data)[i]= i2c->RXDR;
DEBUG("[i2c] read_bytes: DR full, read 0x%02X\n", ((uint8_t*)data)[i]);
}
if (flags & I2C_NOSTOP) {
/* With NOSTOP, the TCR indicates that the next command is ready */
/* TCR is needed because RELOAD is set preventing a NACK on last byte */
return _wait_isr_set(i2c, I2C_ISR_TCR, flags);
}
/* Wait until stop before other commands are sent */
ret = _wait_isr_set(i2c, I2C_ISR_STOPF, flags);
if (ret < 0) {
return ret;
}
return _wait_for_bus(i2c);
}
/**
* Cannot support continuous writes or frame splitting at this level. If an
* I2C_NOSTOP has been sent it must be followed by a repeated start or stop.
*/
int i2c_write_bytes(i2c_t dev, uint16_t address, const void *data,
size_t length, uint8_t flags)
{
assert(dev < I2C_NUMOF);
I2C_TypeDef *i2c = i2c_config[dev].dev;
DEBUG("[i2c] write_bytes: Starting\n");
return _write(i2c, address, data, length, flags, 0);
}
static int _write(I2C_TypeDef *i2c, uint16_t addr, const void *data,
size_t length, uint8_t flags, uint32_t cr2_flags)
{
assert(i2c != NULL && length < MAX_BYTES_PER_FRAME);
/* If reload was NOT set, must either stop or start */
if ((i2c->ISR & I2C_ISR_TC) && (flags & I2C_NOSTART)) {
return -EOPNOTSUPP;
}
int ret = _start(i2c, (addr << 1) | (length << I2C_CR2_NBYTES_Pos) |
cr2_flags, flags);
if (ret < 0) {
return ret;
}
for (size_t i = 0; i < length; i++) {
DEBUG("[i2c] write_bytes: Waiting for TX reg to be free\n");
ret = _wait_isr_set(i2c, I2C_ISR_TXIS, flags);
if (ret < 0) {
return ret;
}
DEBUG("[i2c] write_bytes: TX is free so send byte\n");
/* write data to data register */
i2c->TXDR = ((uint8_t*)data)[i];
}
if (flags & I2C_NOSTOP) {
if (cr2_flags & I2C_CR2_RELOAD) {
DEBUG("[i2c] write_bytes: Waiting for TCR\n");
/* With NOSTOP, the TCR indicates that the next command is ready */
/* TCR is needed because RELOAD allows loading more bytes */
return _wait_isr_set(i2c, I2C_ISR_TCR, flags);
}
else {
DEBUG("[i2c] write_bytes: Waiting for TC\n");
/* With NOSTOP, the TC indicates that the next command is ready */
/* TC is needed because no reload is set for repeated start */
return _wait_isr_set(i2c, I2C_ISR_TC, flags);
}
}
DEBUG("[i2c] write_bytes: Waiting for stop\n");
/* Wait until stop before other commands are sent */
ret = _wait_isr_set(i2c, I2C_ISR_STOPF, flags);
if (ret < 0) {
return ret;
}
return _wait_for_bus(i2c);
}
static int _start(I2C_TypeDef *i2c, uint32_t cr2, uint8_t flags)
{
assert(i2c != NULL);
assert((i2c->ISR & I2C_ISR_BUSY) || !(flags & I2C_NOSTART));
i2c->ICR |= CLEAR_FLAG;
if (flags & I2C_ADDR10) {
return -EOPNOTSUPP;
}
if (!(flags & I2C_NOSTART)) {
DEBUG("[i2c] start: Generate start condition\n");
/* Generate start condition */
cr2 |= I2C_CR2_START;
}
if (!(flags & I2C_NOSTOP)) {
cr2 |= I2C_CR2_AUTOEND;
cr2 &= ~(I2C_CR2_RELOAD);
}
DEBUG("[i2c] start: Setting CR2=0x%08x\n", (unsigned int)cr2);
i2c->CR2 = cr2;
if (!(flags & I2C_NOSTART)) {
uint16_t tick = TICK_TIMEOUT;
while ((i2c->CR2 & I2C_CR2_START) && tick--) {
if (!tick) {
/* Try to stop for state error recovery */
_stop(i2c);
return -ETIMEDOUT;
}
}
DEBUG("[i2c] start: Start condition and address generated\n");
/* Check if the device is there */
if ((i2c->ISR & I2C_ISR_NACKF)) {
i2c->ICR |= I2C_ICR_NACKCF;
_stop(i2c);
return -ENXIO;
}
}
return 0;
}
static int _stop(I2C_TypeDef *i2c)
{
/* Send stop condition */
DEBUG("[i2c] stop: Generate stop condition\n");
i2c->CR2 |= I2C_CR2_STOP;
/* Wait for the stop to complete */
uint16_t tick = TICK_TIMEOUT;
while ((i2c->CR2 & I2C_CR2_STOP) && tick--) {}
if (!tick) {
return -ETIMEDOUT;
}
DEBUG("[i2c] stop: Stop condition succeeded\n");
if (_wait_for_bus(i2c) < 0) {
return -ETIMEDOUT;
}
DEBUG("[i2c] stop: Bus is free\n");
return 0;
}
static int _wait_isr_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags)
{
uint16_t tick = TICK_TIMEOUT;
while (tick--) {
uint32_t isr = i2c->ISR;
if (isr & I2C_ISR_NACKF) {
DEBUG("[i2c] wait_isr_set: NACK received\n");
/* Some devices have a valid data nack, if indicated don't stop */
if (!(flags & I2C_NOSTOP)) {
_stop(i2c);
}
i2c->ICR |= CLEAR_FLAG;
return -EIO;
}
if ((isr & I2C_ISR_ARLO) || (isr & I2C_ISR_BERR)) {
DEBUG("[i2c] wait_isr_set: Arbitration lost or bus error\n");
_stop(i2c);
i2c->ICR |= CLEAR_FLAG;
return -EAGAIN;
}
if (isr & mask) {
DEBUG("[i2c] wait_isr_set: ISR 0x%08x set\n", (unsigned int)mask);
return 0;
}
}
/*
* If timeout occurs this means a problem that must be handled on a higher
* level. A SWRST is recommended by the datasheet.
*/
return -ETIMEDOUT;
}
static inline int _wait_for_bus(I2C_TypeDef *i2c)
{
uint16_t tick = TICK_TIMEOUT;
while (tick-- && (i2c->ISR & I2C_ISR_BUSY)) {}
if (!tick) {
return -ETIMEDOUT;
}
return 0;
}
static inline void irq_handler(i2c_t dev)
{
assert(dev < I2C_NUMOF);
I2C_TypeDef *i2c = i2c_config[dev].dev;
unsigned state = i2c->ISR;
DEBUG("\n\n### I2C ERROR OCCURRED ###\n");
DEBUG("status: %08x\n", state);
if (state & I2C_ISR_OVR) {
DEBUG("OVR\n");
}
if (state & I2C_ISR_NACKF) {
DEBUG("AF\n");
}
if (state & I2C_ISR_ARLO) {
DEBUG("ARLO\n");
}
if (state & I2C_ISR_BERR) {
DEBUG("BERR\n");
}
if (state & I2C_ISR_PECERR) {
DEBUG("PECERR\n");
}
if (state & I2C_ISR_TIMEOUT) {
DEBUG("TIMEOUT\n");
}
if (state & I2C_ISR_ALERT) {
DEBUG("SMBALERT\n");
}
core_panic(PANIC_GENERAL_ERROR, "I2C FAULT");
}
#ifdef I2C_0_ISR
void I2C_0_ISR(void)
{
irq_handler(I2C_DEV(0));
}
#endif /* I2C_0_ISR */
#ifdef I2C_1_ISR
void I2C_1_ISR(void)
{
irq_handler(I2C_DEV(1));
}
#endif /* I2C_1_ISR */