1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-16 05:32:43 +01:00
RIOT/cpu/sam0_common/periph/uart.c
Benjamin Valentin 7e5aa7e775 cpu/sam0_common: uart: fix baud rate calculation
In fractional mode, 3 bits are used to store the fractional part.
Therefore we must multiply / divide by 8 instead of 10 in order to
get the correct values.
2019-09-27 10:49:43 +02:00

240 lines
6.2 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
* 2015 FreshTemp, LLC.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Dylan Laduranty <dylanladuranty@gmail.com>
*
* @}
*/
#include "cpu.h"
#include "periph/uart.h"
#include "periph/gpio.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Allocate memory to store the callback functions
*/
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
/**
* @brief Get the pointer to the base register of the given UART device
*
* @param[in] dev UART device identifier
*
* @return base register address
*/
static inline SercomUsart *dev(uart_t dev)
{
return uart_config[dev].dev;
}
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
if (uart >= UART_NUMOF) {
return UART_NODEV;
}
/* must disable here first to ensure idempotency */
dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE);
/* configure pins */
if (uart_config[uart].rx_pin != GPIO_UNDEF) {
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux);
}
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
gpio_set(uart_config[uart].tx_pin);
gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux);
/* enable peripheral clock */
sercom_clk_en(dev(uart));
/* reset the UART device */
dev(uart)->CTRLA.reg = SERCOM_USART_CTRLA_SWRST;
while (dev(uart)->SYNCBUSY.bit.SWRST) {}
/* configure clock generator */
sercom_set_gen(dev(uart), uart_config[uart].gclk_src);
/* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified
* by the board in the periph_conf.h, x16 sampling and use internal clock */
dev(uart)->CTRLA.reg = (SERCOM_USART_CTRLA_DORD |
SERCOM_USART_CTRLA_SAMPR(0x1) |
SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) |
SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) |
SERCOM_USART_CTRLA_MODE(0x1));
/* Set run in standby mode if enabled */
if (uart_config[uart].flags & UART_FLAG_RUN_STANDBY) {
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_RUNSTDBY;
}
/* calculate and set baudrate */
uint32_t baud = ((((uint32_t)CLOCK_CORECLOCK * 8) / baudrate) / 16);
dev(uart)->BAUD.FRAC.FP = (baud % 8);
dev(uart)->BAUD.FRAC.BAUD = (baud / 8);
/* enable transmitter, and configure 8N1 mode */
dev(uart)->CTRLB.reg = SERCOM_USART_CTRLB_TXEN;
/* enable receiver and RX interrupt if configured */
if ((rx_cb) && (uart_config[uart].rx_pin != GPIO_UNDEF)) {
uart_ctx[uart].rx_cb = rx_cb;
uart_ctx[uart].arg = arg;
#if defined (CPU_SAML1X) || defined (CPU_SAMD5X)
NVIC_EnableIRQ(SERCOM0_2_IRQn + (sercom_id(dev(uart)) * 4));
#else
NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart)));
#endif
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_RXEN;
dev(uart)->INTENSET.reg |= SERCOM_USART_INTENSET_RXC;
/* set wakeup receive from sleep if enabled */
if (uart_config[uart].flags & UART_FLAG_WAKEUP) {
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE;
}
}
while (dev(uart)->SYNCBUSY.bit.CTRLB) {}
/* and finally enable the device */
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
return UART_OK;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
for (size_t i = 0; i < len; i++) {
while (!dev(uart)->INTFLAG.bit.DRE) {}
dev(uart)->DATA.reg = data[i];
}
while (!dev(uart)->INTFLAG.bit.TXC) {}
}
void uart_poweron(uart_t uart)
{
sercom_clk_en(dev(uart));
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
}
void uart_poweroff(uart_t uart)
{
dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE);
sercom_clk_dis(dev(uart));
}
#ifdef MODULE_PERIPH_UART_MODECFG
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
uart_stop_bits_t stop_bits)
{
if (uart >= UART_NUMOF) {
return UART_NODEV;
}
if (stop_bits != UART_STOP_BITS_1 && stop_bits != UART_STOP_BITS_2) {
return UART_NOMODE;
}
if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN &&
parity != UART_PARITY_ODD) {
return UART_NOMODE;
}
/* Disable UART first to remove write protect */
dev(uart)->CTRLA.bit.ENABLE = 0;
while (dev(uart)->SYNCBUSY.bit.ENABLE) {}
dev(uart)->CTRLB.bit.CHSIZE = data_bits;
if (parity == UART_PARITY_NONE) {
dev(uart)->CTRLA.bit.FORM = 0x0;
}
else {
dev(uart)->CTRLA.bit.FORM = 0x1;
dev(uart)->CTRLB.bit.PMODE = (parity == UART_PARITY_ODD) ? 1 : 0;
}
dev(uart)->CTRLB.bit.SBMODE = (stop_bits == UART_STOP_BITS_1) ? 0 : 1;
/* Enable UART again */
dev(uart)->CTRLA.bit.ENABLE = 1;
while (dev(uart)->SYNCBUSY.bit.ENABLE) {}
return UART_OK;
}
#endif
static inline void irq_handler(unsigned uartnum)
{
if (dev(uartnum)->INTFLAG.bit.RXC) {
/* interrupt flag is cleared by reading the data register */
uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg,
(uint8_t)(dev(uartnum)->DATA.reg));
}
else if (dev(uartnum)->INTFLAG.bit.ERROR) {
/* clear error flag */
dev(uartnum)->INTFLAG.reg = SERCOM_USART_INTFLAG_ERROR;
}
cortexm_isr_end();
}
#ifdef UART_0_ISR
void UART_0_ISR(void)
{
irq_handler(0);
}
#endif
#ifdef UART_1_ISR
void UART_1_ISR(void)
{
irq_handler(1);
}
#endif
#ifdef UART_2_ISR
void UART_2_ISR(void)
{
irq_handler(2);
}
#endif
#ifdef UART_3_ISR
void UART_3_ISR(void)
{
irq_handler(3);
}
#endif
#ifdef UART_4_ISR
void UART_4_ISR(void)
{
irq_handler(4);
}
#endif
#ifdef UART_5_ISR
void UART_5_ISR(void)
{
irq_handler(5);
}
#endif