/* * Copyright (C) 2015 Freie Universität Berlin * 2015 FreshTemp, LLC. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam0_common * @ingroup drivers_periph_uart * @{ * * @file * @brief Low-level UART driver implementation * * @author Thomas Eichinger * @author Troels Hoffmeyer * @author Hauke Petersen * @author Dylan Laduranty * * @} */ #include "cpu.h" #include "periph/uart.h" #include "periph/gpio.h" #define ENABLE_DEBUG (0) #include "debug.h" /** * @brief Allocate memory to store the callback functions */ static uart_isr_ctx_t uart_ctx[UART_NUMOF]; /** * @brief Get the pointer to the base register of the given UART device * * @param[in] dev UART device identifier * * @return base register address */ static inline SercomUsart *dev(uart_t dev) { return uart_config[dev].dev; } int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { if (uart >= UART_NUMOF) { return UART_NODEV; } /* must disable here first to ensure idempotency */ dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE); /* configure pins */ if (uart_config[uart].rx_pin != GPIO_UNDEF) { gpio_init(uart_config[uart].rx_pin, GPIO_IN); gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux); } gpio_init(uart_config[uart].tx_pin, GPIO_OUT); gpio_set(uart_config[uart].tx_pin); gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux); /* enable peripheral clock */ sercom_clk_en(dev(uart)); /* reset the UART device */ dev(uart)->CTRLA.reg = SERCOM_USART_CTRLA_SWRST; while (dev(uart)->SYNCBUSY.bit.SWRST) {} /* configure clock generator */ sercom_set_gen(dev(uart), uart_config[uart].gclk_src); /* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified * by the board in the periph_conf.h, x16 sampling and use internal clock */ dev(uart)->CTRLA.reg = (SERCOM_USART_CTRLA_DORD | SERCOM_USART_CTRLA_SAMPR(0x1) | SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) | SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) | SERCOM_USART_CTRLA_MODE(0x1)); /* Set run in standby mode if enabled */ if (uart_config[uart].flags & UART_FLAG_RUN_STANDBY) { dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_RUNSTDBY; } /* calculate and set baudrate */ uint32_t baud = ((((uint32_t)CLOCK_CORECLOCK * 8) / baudrate) / 16); dev(uart)->BAUD.FRAC.FP = (baud % 8); dev(uart)->BAUD.FRAC.BAUD = (baud / 8); /* enable transmitter, and configure 8N1 mode */ dev(uart)->CTRLB.reg = SERCOM_USART_CTRLB_TXEN; /* enable receiver and RX interrupt if configured */ if ((rx_cb) && (uart_config[uart].rx_pin != GPIO_UNDEF)) { uart_ctx[uart].rx_cb = rx_cb; uart_ctx[uart].arg = arg; #if defined (CPU_SAML1X) || defined (CPU_SAMD5X) NVIC_EnableIRQ(SERCOM0_2_IRQn + (sercom_id(dev(uart)) * 4)); #else NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart))); #endif dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_RXEN; dev(uart)->INTENSET.reg |= SERCOM_USART_INTENSET_RXC; /* set wakeup receive from sleep if enabled */ if (uart_config[uart].flags & UART_FLAG_WAKEUP) { dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE; } } while (dev(uart)->SYNCBUSY.bit.CTRLB) {} /* and finally enable the device */ dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE; return UART_OK; } void uart_write(uart_t uart, const uint8_t *data, size_t len) { for (size_t i = 0; i < len; i++) { while (!dev(uart)->INTFLAG.bit.DRE) {} dev(uart)->DATA.reg = data[i]; } while (!dev(uart)->INTFLAG.bit.TXC) {} } void uart_poweron(uart_t uart) { sercom_clk_en(dev(uart)); dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE; } void uart_poweroff(uart_t uart) { dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE); sercom_clk_dis(dev(uart)); } #ifdef MODULE_PERIPH_UART_MODECFG int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity, uart_stop_bits_t stop_bits) { if (uart >= UART_NUMOF) { return UART_NODEV; } if (stop_bits != UART_STOP_BITS_1 && stop_bits != UART_STOP_BITS_2) { return UART_NOMODE; } if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN && parity != UART_PARITY_ODD) { return UART_NOMODE; } /* Disable UART first to remove write protect */ dev(uart)->CTRLA.bit.ENABLE = 0; while (dev(uart)->SYNCBUSY.bit.ENABLE) {} dev(uart)->CTRLB.bit.CHSIZE = data_bits; if (parity == UART_PARITY_NONE) { dev(uart)->CTRLA.bit.FORM = 0x0; } else { dev(uart)->CTRLA.bit.FORM = 0x1; dev(uart)->CTRLB.bit.PMODE = (parity == UART_PARITY_ODD) ? 1 : 0; } dev(uart)->CTRLB.bit.SBMODE = (stop_bits == UART_STOP_BITS_1) ? 0 : 1; /* Enable UART again */ dev(uart)->CTRLA.bit.ENABLE = 1; while (dev(uart)->SYNCBUSY.bit.ENABLE) {} return UART_OK; } #endif static inline void irq_handler(unsigned uartnum) { if (dev(uartnum)->INTFLAG.bit.RXC) { /* interrupt flag is cleared by reading the data register */ uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg, (uint8_t)(dev(uartnum)->DATA.reg)); } else if (dev(uartnum)->INTFLAG.bit.ERROR) { /* clear error flag */ dev(uartnum)->INTFLAG.reg = SERCOM_USART_INTFLAG_ERROR; } cortexm_isr_end(); } #ifdef UART_0_ISR void UART_0_ISR(void) { irq_handler(0); } #endif #ifdef UART_1_ISR void UART_1_ISR(void) { irq_handler(1); } #endif #ifdef UART_2_ISR void UART_2_ISR(void) { irq_handler(2); } #endif #ifdef UART_3_ISR void UART_3_ISR(void) { irq_handler(3); } #endif #ifdef UART_4_ISR void UART_4_ISR(void) { irq_handler(4); } #endif #ifdef UART_5_ISR void UART_5_ISR(void) { irq_handler(5); } #endif