1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32f1/periph/uart.c
2014-08-21 17:53:38 +02:00

325 lines
6.8 KiB
C

/*
* Copyright (C) 2014 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32f1
* @{
*
* @file uart.c
* @brief Low-level UART driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
*
* @}
*/
#include <math.h>
#include "cpu.h"
#include "board.h"
#include "periph_conf.h"
#include "periph/uart.h"
#include "sched.h"
#include "thread.h"
#ifdef MODULE_UART0
#include "board_uart0.h"
#endif
/**
* @brief Each UART device has to store two callbacks.
*/
typedef struct {
uart_rx_cb_t rx_cb;
uart_tx_cb_t tx_cb;
void *arg;
} uart_conf_t;
/**
* @brief Unified interrupt handler for all UART devices
*
* @param uartnum the number of the UART that triggered the ISR
* @param uart the UART device that triggered the ISR
*/
static inline void irq_handler(uart_t uartnum, USART_TypeDef *uart);
/**
* @brief Allocate memory to store the callback functions.
*/
static uart_conf_t config[UART_NUMOF];
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, uart_tx_cb_t tx_cb, void *arg)
{
int res;
/* initialize UART in blocking mode first */
res = uart_init_blocking(uart, baudrate);
if (res < 0) {
return res;
}
/* enable global interrupt and configure the interrupts priority */
switch (uart) {
#if UART_0_EN
case UART_0:
NVIC_SetPriority(UART_0_IRQ, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_0_IRQ);
UART_0_DEV->CR1 |= USART_CR1_RXNEIE;
break;
#endif
#if UART_1_EN
case UART_1:
NVIC_SetPriority(UART_1_IRQ, UART_IRQ_PRIO);
NVIC_EnableIRQ(UART_1_IRQ);
UART_1_DEV->CR1 |= USART_CR1_RXNEIE;
break;
#endif
default:
return -2;
}
/* register callbacks */
config[uart].rx_cb = rx_cb;
config[uart].tx_cb = tx_cb;
return 0;
}
int uart_init_blocking(uart_t uart, uint32_t baudrate)
{
USART_TypeDef *dev;
GPIO_TypeDef *port;
uint32_t rx_pin, tx_pin, bus_freq;
float divider;
uint16_t mantissa;
uint8_t fraction;
/* enable UART and port clocks and select devices */
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
port = UART_0_PORT;
rx_pin = UART_0_RX_PIN;
tx_pin = UART_0_TX_PIN;
bus_freq = UART_0_BUS_FREQ;
/* enable clocks */
UART_0_CLKEN();
UART_0_PORT_CLKEN();
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
port = UART_1_PORT;
tx_pin = UART_1_TX_PIN;
rx_pin = UART_1_RX_PIN;
bus_freq = UART_1_BUS_FREQ;
/* enable clocks */
UART_1_CLKEN();
UART_1_PORT_CLKEN();
break;
#endif
default:
return -2;
}
/* Configure USART Tx as alternate function push-pull and 50MHz*/
if (tx_pin < 8) {
port->CRL &= ~(0xf << (tx_pin * 4));
port->CRL |= (0xB << (tx_pin * 4));
}
else {
port->CRH &= ~(0xf << ((tx_pin-8) * 4));
port->CRH |= (0xB << ((tx_pin-8) * 4));
}
/* Configure USART Rx as floating input */
if (rx_pin < 8) {
port->CRL &= ~(0xf << (rx_pin * 4));
port->CRL |= (0x4 << (rx_pin * 4));
}
else {
port->CRH &= ~(0xf << ((rx_pin-8) * 4));
port->CRH |= (0x4 << ((rx_pin-8) * 4));
}
/* configure UART to mode 8N1 with given baudrate */
divider = ((float)bus_freq) / (16 * baudrate);
mantissa = (uint16_t)floorf(divider);
fraction = (uint8_t)floorf((divider - mantissa) * 16);
dev->BRR = 0;
dev->BRR |= ((mantissa & 0x0fff) << 4) | (0x0f & fraction);
/* enable receive and transmit mode */
dev->CR1 |= USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
return 0;
}
void uart_tx_begin(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_DEV->CR1 |= USART_CR1_TXEIE;
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_DEV->CR1 |= USART_CR1_TXEIE;
break;
#endif
}
}
void uart_tx_end(uart_t uart)
{
switch (uart) {
#if UART_0_EN
case UART_0:
UART_0_DEV->CR1 &= ~USART_CR1_TXEIE;
break;
#endif
#if UART_1_EN
case UART_1:
UART_1_DEV->CR1 &= ~USART_CR1_TXEIE;
break;
#endif
}
}
int uart_write(uart_t uart, char data)
{
USART_TypeDef *dev;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
break;
#endif
default:
return -1;
}
if (dev->SR & USART_SR_TXE) {
dev->DR = (uint8_t)data;
}
return 0;
}
int uart_read_blocking(uart_t uart, char *data)
{
USART_TypeDef *dev;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
break;
#endif
default:
return -1;
}
while (!(dev->SR & USART_SR_RXNE));
*data = (char)dev->DR;
return 1;
}
int uart_write_blocking(uart_t uart, char data)
{
USART_TypeDef *dev;
switch (uart) {
#if UART_0_EN
case UART_0:
dev = UART_0_DEV;
break;
#endif
#if UART_1_EN
case UART_1:
dev = UART_1_DEV;
break;
#endif
default:
return -1;
}
while (!(dev->SR & USART_SR_TXE));
dev->DR = (uint8_t)data;
return 1;
}
#if UART_0_EN
__attribute__((naked)) void UART_0_ISR(void)
{
ISR_ENTER();
irq_handler(UART_0, UART_0_DEV);
ISR_EXIT();
}
#endif
#if UART_1_EN
__attribute__((naked)) void UART_1_ISR(void)
{
ISR_ENTER();
irq_handler(UART_1, UART_1_DEV);
ISR_EXIT();
}
#endif
static inline void irq_handler(uint8_t uartnum, USART_TypeDef *dev)
{
if (dev->SR & USART_SR_RXNE) {
char data = (char)dev->DR;
#ifdef MODULE_UART0
if (uart0_handler_pid) {
uart0_handle_incoming(data);
uart0_notify_thread();
}
#else
config[uartnum].rx_cb(config[uartnum].arg, data);
#endif
}
else if (dev->SR & USART_SR_ORE) {
/* ORE is cleared by reading SR and DR sequentially */
dev->DR;
}
else if (dev->SR & USART_SR_TXE) {
#ifdef MODULE_UART0
dev->SR &= ~(USART_SR_TXE);
#else
config[uartnum].tx_cb(config[uartnum].arg);
#endif
}
if (sched_context_switch_request) {
thread_yield();
}
}