1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 11:52:44 +01:00
RIOT/cpu/qn908x/periph/timer.c
2023-12-07 16:17:57 +01:00

220 lines
5.4 KiB
C

/*
* Copyright (C) 2020 iosabi
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_qn908x
* @ingroup drivers_periph_timer
*
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* This driver leverages the Freescale/NXP implementation distributed with the
* SDK.
*
* @author iosabi <iosabi@protonmail.com>
*
* @}
*/
#include <stdlib.h>
#include "bitarithm.h"
#include "board.h"
#include "cpu.h"
#include "periph/timer.h"
#include "periph_conf.h"
#include "vendor/drivers/fsl_clock.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief Interrupt context information for configured timers.
*/
static timer_isr_ctx_t isr_ctx[FSL_FEATURE_SOC_CTIMER_COUNT];
/**
* @brief CTIMER peripheral base pointers.
*/
static CTIMER_Type* const ctimers[FSL_FEATURE_SOC_CTIMER_COUNT] =
CTIMER_BASE_PTRS;
/**
* @brief CTIMER IRQ numbers.
*/
static IRQn_Type const ctimers_irqn[FSL_FEATURE_SOC_CTIMER_COUNT] =
CTIMER_IRQS;
/**
* @brief CTIMER Clocks.
*/
static const clock_ip_name_t ctimers_clocks[FSL_FEATURE_SOC_CTIMER_COUNT] =
CTIMER_CLOCKS;
/**
* @brief Check the board config to make sure we do not exceed max number of
* timers
*/
#if TIMER_NUMOF > FSL_FEATURE_SOC_CTIMER_COUNT
#error "ERROR in board timer configuration: too many timers defined"
#endif
uword_t timer_query_freqs_numof(tim_t dev)
{
assert(dev < TIMER_NUMOF);
(void)dev;
return 256;
}
uint32_t timer_query_freqs(tim_t dev, uword_t index)
{
assert(dev < TIMER_NUMOF);
(void)dev;
if (index >= UINT8_MAX) {
return 0;
}
return CLOCK_GetFreq(kCLOCK_ApbClk) / (index + 1);
}
int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg)
{
DEBUG("timer_init(%u, %" PRIu32 ")\n", tim, freq);
if (tim >= TIMER_NUMOF) {
return -1;
}
isr_ctx[tim].cb = cb;
isr_ctx[tim].arg = arg;
CLOCK_EnableClock(ctimers_clocks[tim]);
CTIMER_Type *dev = ctimers[tim];
/* CTIMER blocks are driven from the APB clock. */
uint32_t core_freq = CLOCK_GetFreq(kCLOCK_ApbClk);
uint32_t prescale = (core_freq + freq / 2) / freq - 1;
if (prescale == (uint32_t)(-1)) {
DEBUG("timer_init: Frequency %" PRIu32 " is too fast for core_freq=%" PRIu32,
freq, core_freq);
return -1;
}
dev->CTCR = CTIMER_CTCR_CTMODE(0); /* timer mode */
dev->PR = CTIMER_PR_PRVAL(prescale);
/* Enable timer interrupts in the NVIC. */
NVIC_EnableIRQ(ctimers_irqn[tim]);
/* Timer should be started after init. */
dev->TCR |= CTIMER_TCR_CEN_MASK;
return 0;
}
int timer_set_absolute(tim_t tim, int channel, unsigned int value)
{
DEBUG("timer_set_absolute(%u, %u, %u)\n", tim, channel, value);
if ((tim >= TIMER_NUMOF) || (channel >= TIMER_CHANNEL_NUMOF)) {
return -1;
}
CTIMER_Type* const dev = ctimers[tim];
dev->MR[channel] = value;
dev->MCR |= (CTIMER_MCR_MR0I_MASK << (channel * 3));
return 0;
}
int timer_set(tim_t tim, int channel, unsigned int value)
{
DEBUG("timer_set(%u, %u, %u)\n", tim, channel, value);
if ((tim >= TIMER_NUMOF) || (channel >= TIMER_CHANNEL_NUMOF)) {
return -1;
}
CTIMER_Type* const dev = ctimers[tim];
/* no IRQ will be generated on value == 0, so bump it here */
value = (value != 0) ? value : 1;
unsigned irq_state = irq_disable();
/* briefly pause timer */
ctimers[tim]->TCR &= ~CTIMER_TCR_CEN_MASK;
/* set absolute timeout based on given value and enable IRQ */
dev->MR[channel] = dev->TC + value;
dev->MCR |= (CTIMER_MCR_MR0I_MASK << (channel * 3));
/* and resume timer */
ctimers[tim]->TCR |= CTIMER_TCR_CEN_MASK;
irq_restore(irq_state);
return 0;
}
int timer_clear(tim_t tim, int channel)
{
DEBUG("timer_clear(%u, %d)\n", tim, channel);
if ((tim >= TIMER_NUMOF) || (channel >= TIMER_CHANNEL_NUMOF)) {
return -1;
}
CTIMER_Type* const dev = ctimers[tim];
dev->MCR &= ~(CTIMER_MCR_MR0I_MASK << (channel * 3));
return 0;
}
unsigned int timer_read(tim_t tim)
{
DEBUG("timer_read(%u) --> %" PRIu32 "\n", tim, ctimers[tim]->TC);
return ctimers[tim]->TC;
}
void timer_start(tim_t tim)
{
DEBUG("timer_start(%u)\n", tim);
ctimers[tim]->TCR |= CTIMER_TCR_CEN_MASK;
}
void timer_stop(tim_t tim)
{
DEBUG("timer_stop(%u)\n", tim);
ctimers[tim]->TCR &= ~CTIMER_TCR_CEN_MASK;
}
static inline void isr_ctimer_n(CTIMER_Type *dev, uint32_t ctimer_num)
{
DEBUG("isr_ctimer_%" PRIu32 " flags=0x%" PRIx32 "\n",
ctimer_num, dev->IR);
unsigned state = dev->IR & ((1 << TIMER_CHANNEL_NUMOF) - 1);
while (state) {
uint8_t channel;
state = bitarithm_test_and_clear(state, &channel);
/* Note: setting the bit to 1 in the flag register will clear the
* bit. */
dev->IR = 1u << channel;
dev->MCR &= ~(CTIMER_MCR_MR0I_MASK << (channel * 3));
isr_ctx[ctimer_num].cb(isr_ctx[ctimer_num].arg, channel);
}
cortexm_isr_end();
}
#ifdef CTIMER0
void isr_ctimer0(void) { isr_ctimer_n(CTIMER0, 0); }
#endif /* CTIMER0 */
#ifdef CTIMER1
void isr_ctimer1(void) { isr_ctimer_n(CTIMER1, 1); }
#endif /* CTIMER1 */
#ifdef CTIMER2
void isr_ctimer2(void) { isr_ctimer_n(CTIMER2, 2); }
#endif /* CTIMER2 */
#ifdef CTIMER3
void isr_ctimer3(void) { isr_ctimer_n(CTIMER3, 3); }
#endif /* CTIMER3 */