1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/sam0_common/periph/uart.c
Dylan Laduranty f31ac8a978 cpu/sam0/periph: remove bitfield usage in UART driver
Signed-off-by: Dylan Laduranty <dylan.laduranty@mesotic.com>
2024-06-25 16:13:16 +02:00

752 lines
20 KiB
C

/*
* Copyright (C) 2015 Freie Universität Berlin
* 2015 FreshTemp, LLC.
* 2022 SSV Software Systems GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Dylan Laduranty <dylanladuranty@gmail.com>
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
* @author Juergen Fitschen <me@jue.yt>
*
* @}
*/
#include "cpu.h"
#include "pm_layered.h"
#include "periph/uart.h"
#include "periph/gpio.h"
#define ENABLE_DEBUG 0
#include "debug.h"
#if defined (CPU_COMMON_SAML1X) || defined (CPU_COMMON_SAMD5X)
#define UART_HAS_TX_ISR
#endif
/* default to fractional baud rate calculation */
#if !defined(CONFIG_SAM0_UART_BAUD_FRAC) && defined(SERCOM_USART_BAUD_FRAC_BAUD)
/* SAML21 has no fractional baud rate on SERCOM5 */
#if defined(CPU_SAML21)
#define CONFIG_SAM0_UART_BAUD_FRAC 0
#else
#define CONFIG_SAM0_UART_BAUD_FRAC 1
#endif
#endif
/* SAMD20 defines no generic macro */
#ifdef SERCOM_USART_CTRLA_TXPO_PAD0
#undef SERCOM_USART_CTRLA_TXPO
#define SERCOM_USART_CTRLA_TXPO(n) ((n) << SERCOM_USART_CTRLA_TXPO_Pos)
#endif
/**
* @brief Allocate memory to store the callback functions & buffers
*/
#ifdef MODULE_PERIPH_UART_NONBLOCKING
#include "tsrb.h"
static tsrb_t uart_tx_rb[UART_NUMOF];
static uint8_t uart_tx_rb_buf[UART_NUMOF][UART_TXBUF_SIZE];
#endif
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
/**
* @brief Get the pointer to the base register of the given UART device
*
* @param[in] dev UART device identifier
*
* @return base register address
*/
static inline SercomUsart *dev(uart_t dev)
{
return uart_config[dev].dev;
}
static inline void _syncbusy(SercomUsart *dev)
{
#ifdef SERCOM_USART_SYNCBUSY_MASK
while (dev->SYNCBUSY.reg) {}
#else
while (dev->STATUS.reg & SERCOM_USART_STATUS_SYNCBUSY) {}
#endif
}
static inline void _reset(SercomUsart *dev)
{
dev->CTRLA.reg = SERCOM_USART_CTRLA_SWRST;
while (dev->CTRLA.reg & SERCOM_SPI_CTRLA_SWRST) {}
#ifdef SERCOM_USART_SYNCBUSY_MASK
while (dev->SYNCBUSY.reg & SERCOM_USART_SYNCBUSY_SWRST) {}
#else
while (dev->STATUS.reg & SERCOM_USART_STATUS_SYNCBUSY) {}
#endif
}
static void _set_baud(uart_t uart, uint32_t baudrate, uint32_t f_src)
{
#if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC)
/* Asynchronous Fractional */
/* BAUD + FP / 8 = f_src / (S * f_baud) */
/* BAUD * 8 + FP = (8 * f_src) / (S * f_baud) */
/* S * (BAUD + 8 * FP) = (8 * f_src) / f_baud */
uint32_t baud = (f_src * 8) / baudrate;
dev(uart)->BAUD.FRAC.FP = (baud >> 4) & 0x7; /* baud / 16 */
dev(uart)->BAUD.FRAC.BAUD = baud >> 7; /* baud / (8 * 16) */
#else
/* Asynchronous Arithmetic */
/* BAUD = 2^16 * (2^0 - 2^4 * f_baud / f_src) */
/* = 2^(16-n) * (2^n - 2^(n+4) * f_baud / f_src) */
/* = 2^(20-n) * (2^(n-4) - 2^n * f_baud / f_src) */
/* 2^n * f_baud < 2^32 -> find the next power of 2 */
uint8_t pow = __builtin_clz(baudrate);
/* 2^n * f_baud */
baudrate <<= pow;
/* (2^(n-4) - 2^n * f_baud / f_src) */
uint32_t tmp = (1 << (pow - 4)) - baudrate / f_src;
uint32_t rem = baudrate % f_src;
uint8_t scale = 20 - pow;
dev(uart)->BAUD.reg = (tmp << scale) - (rem << scale) / f_src;
#endif
}
void uart_enable_tx(uart_t uart)
{
/* configure RX pin */
if (uart_config[uart].tx_pin != GPIO_UNDEF) {
gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux);
}
}
void uart_disable_tx(uart_t uart)
{
/* configure RX pin */
if (uart_config[uart].tx_pin != GPIO_UNDEF) {
gpio_init_mux(uart_config[uart].tx_pin, GPIO_MUX_A);
}
}
static void _configure_pins(uart_t uart)
{
/* configure RX pin */
if (uart_config[uart].rx_pin != GPIO_UNDEF) {
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux);
}
/* configure TX pin */
if (uart_config[uart].tx_pin != GPIO_UNDEF &&
!(uart_config[uart].flags & UART_FLAG_TX_ONDEMAND)) {
gpio_set(uart_config[uart].tx_pin);
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux);
}
#ifdef MODULE_PERIPH_UART_HW_FC
/* If RTS/CTS needed, enable them */
if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) {
/* Ensure RTS is defined */
if (uart_config[uart].rts_pin != GPIO_UNDEF) {
gpio_init_mux(uart_config[uart].rts_pin, uart_config[uart].mux);
}
/* Ensure CTS is defined */
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
gpio_init_mux(uart_config[uart].cts_pin, uart_config[uart].mux);
}
}
#endif
}
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
if (uart >= UART_NUMOF) {
return UART_NODEV;
}
/* enable peripheral clock */
sercom_clk_en(dev(uart));
#if IS_ACTIVE(MODULE_PM_LAYERED) && defined(SAM0_UART_PM_BLOCK)
/* clear previously blocked power modes */
if (dev(uart)->CTRLA.reg & SERCOM_USART_CTRLA_ENABLE) {
/* RX IRQ is enabled */
if (dev(uart)->INTENSET.reg & SERCOM_USART_INTENSET_RXC) {
pm_unblock(SAM0_UART_PM_BLOCK);
}
/* data reg empty IRQ is enabled -> sending data was in progress */
if (dev(uart)->INTENSET.reg & SERCOM_USART_INTENSET_DRE) {
pm_unblock(SAM0_UART_PM_BLOCK);
}
}
#endif
/* must disable here first to ensure idempotency */
dev(uart)->CTRLA.reg = 0;
#ifdef MODULE_PERIPH_UART_NONBLOCKING
/* set up the TX buffer */
tsrb_init(&uart_tx_rb[uart], uart_tx_rb_buf[uart], UART_TXBUF_SIZE);
#endif
/* configure pins */
_configure_pins(uart);
/* reset the UART device */
_reset(dev(uart));
/* configure clock generator */
sercom_set_gen(dev(uart), uart_config[uart].gclk_src);
uint32_t f_src = sam0_gclk_freq(uart_config[uart].gclk_src);
#if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC)
uint32_t sampr;
/* constraint: f_baud ≤ f_src / S */
if (baudrate * 16 > f_src) {
/* 8x oversampling */
sampr = SERCOM_USART_CTRLA_SAMPR(0x3);
f_src <<= 1;
} else {
/* 16x oversampling */
sampr = SERCOM_USART_CTRLA_SAMPR(0x1);
}
#endif
/* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified
* by the board in the periph_conf.h, x16 sampling and use internal clock */
dev(uart)->CTRLA.reg = SERCOM_USART_CTRLA_DORD
#if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC)
/* enable Asynchronous Fractional mode */
| sampr
#endif
| SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad)
| SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad)
| SERCOM_USART_CTRLA_MODE(0x1);
/* Set run in standby mode if enabled */
if (uart_config[uart].flags & UART_FLAG_RUN_STANDBY) {
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_RUNSTDBY;
}
/* calculate and set baudrate */
_set_baud(uart, baudrate, f_src);
/* enable transmitter, and configure 8N1 mode */
if (uart_config[uart].tx_pin != GPIO_UNDEF) {
dev(uart)->CTRLB.reg = SERCOM_USART_CTRLB_TXEN;
} else {
dev(uart)->CTRLB.reg = 0;
}
/* enable receiver and RX interrupt if configured */
if ((rx_cb) && (uart_config[uart].rx_pin != GPIO_UNDEF)) {
uart_ctx[uart].rx_cb = rx_cb;
uart_ctx[uart].arg = arg;
#ifdef UART_HAS_TX_ISR
/* enable RXNE ISR */
NVIC_EnableIRQ(SERCOM0_2_IRQn + (sercom_id(dev(uart)) * 4));
#else
/* enable UART ISR */
NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart)));
#endif /* UART_HAS_TX_ISR */
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_RXEN;
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
#if IS_ACTIVE(MODULE_PM_LAYERED) && defined(SAM0_UART_PM_BLOCK)
/* block power mode for rx IRQs */
pm_block(SAM0_UART_PM_BLOCK);
#endif
/* set wakeup receive from sleep if enabled */
if (uart_config[uart].flags & UART_FLAG_WAKEUP) {
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE;
}
}
#ifdef MODULE_PERIPH_UART_NONBLOCKING
#ifndef UART_HAS_TX_ISR
else {
/* enable UART ISR */
NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart)));
}
#else
/* enable TXE ISR */
NVIC_EnableIRQ(SERCOM0_0_IRQn + (sercom_id(dev(uart)) * 4));
#endif
#endif /* MODULE_PERIPH_UART_NONBLOCKING */
_syncbusy(dev(uart));
/* and finally enable the device */
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
return UART_OK;
}
void uart_init_pins(uart_t uart)
{
_configure_pins(uart);
uart_poweron(uart);
}
void uart_deinit_pins(uart_t uart)
{
uart_poweroff(uart);
/* de-configure RX pin */
if (uart_config[uart].rx_pin != GPIO_UNDEF) {
gpio_disable_mux(uart_config[uart].rx_pin);
}
/* de-configure TX pin */
if (uart_config[uart].tx_pin != GPIO_UNDEF) {
gpio_disable_mux(uart_config[uart].tx_pin);
}
#ifdef MODULE_PERIPH_UART_HW_FC
/* If RTS/CTS needed, enable them */
if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) {
/* Ensure RTS is defined */
if (uart_config[uart].rts_pin != GPIO_UNDEF) {
gpio_disable_mux(uart_config[uart].rts_pin);
}
/* Ensure CTS is defined */
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
gpio_disable_mux(uart_config[uart].cts_pin);
}
}
#endif
}
gpio_t uart_pin_cts(uart_t uart)
{
#ifdef MODULE_PERIPH_UART_HW_FC
if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) {
return uart_config[uart].cts_pin;
}
#endif
(void)uart;
return GPIO_UNDEF;
}
gpio_t uart_pin_rts(uart_t uart)
{
#ifdef MODULE_PERIPH_UART_HW_FC
if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) {
return uart_config[uart].rts_pin;
}
#endif
(void)uart;
return GPIO_UNDEF;
}
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
if (uart_config[uart].tx_pin == GPIO_UNDEF) {
return;
}
if (!(dev(uart)->CTRLA.reg & SERCOM_USART_CTRLA_ENABLE)) {
return;
}
#ifdef MODULE_PERIPH_UART_NONBLOCKING
for (const void* end = data + len; data != end; ++data) {
if (irq_is_in() || __get_PRIMASK()) {
/* if ring buffer is full free up a spot */
if (tsrb_full(&uart_tx_rb[uart])) {
while (!(dev(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_DRE)) {}
dev(uart)->DATA.reg = tsrb_get_one(&uart_tx_rb[uart]);
}
tsrb_add_one(&uart_tx_rb[uart], *data);
}
else {
while (tsrb_add_one(&uart_tx_rb[uart], *data) < 0) {}
}
/* check and enable DRE IRQs atomically */
#if IS_ACTIVE(MODULE_PM_LAYERED) && defined(SAM0_UART_PM_BLOCK)
unsigned state = irq_disable();
/* tsrb_add_one() is blocking the thread. It may happen that
* the corresponding ISR has turned off DRE IRQs and, thus,
* unblocked the corresponding power mode. */
if (!(dev(uart)->INTENSET.reg & SERCOM_USART_INTENSET_DRE)) {
pm_block(SAM0_UART_PM_BLOCK);
}
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_DRE;
irq_restore(state);
#else
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_DRE;
#endif
}
#else
for (const void* end = data + len; data != end; ++data) {
while (!(dev(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_DRE)) {}
dev(uart)->DATA.reg = *data;
}
while (!(dev(uart)->INTFLAG.reg & SERCOM_USART_INTFLAG_TXC)) {}
#endif
}
void uart_poweron(uart_t uart)
{
sercom_clk_en(dev(uart));
/* the enable bit must be read and written atomically */
unsigned state = irq_disable();
#if IS_ACTIVE(MODULE_PM_LAYERED) && defined(SAM0_UART_PM_BLOCK)
/* block required power modes */
if (!(dev(uart)->CTRLA.reg & SERCOM_USART_CTRLA_ENABLE)) {
/* RX IRQ is enabled */
if (dev(uart)->INTENSET.reg & SERCOM_USART_INTENSET_RXC) {
pm_block(SAM0_UART_PM_BLOCK);
}
/* data reg empty IRQ is enabled -> sending data was in progress */
if (dev(uart)->INTENSET.reg & SERCOM_USART_INTENSET_DRE) {
pm_block(SAM0_UART_PM_BLOCK);
}
}
#endif
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
irq_restore(state);
_syncbusy(dev(uart));
}
void uart_poweroff(uart_t uart)
{
/* the enable bit must be read and written atomically */
unsigned state = irq_disable();
#if IS_ACTIVE(MODULE_PM_LAYERED) && defined(SAM0_UART_PM_BLOCK)
/* clear blocked power modes */
if (dev(uart)->CTRLA.reg & SERCOM_USART_CTRLA_ENABLE) {
/* RX IRQ is enabled */
if (dev(uart)->INTENSET.reg & SERCOM_USART_INTENSET_RXC) {
pm_unblock(SAM0_UART_PM_BLOCK);
}
/* data reg empty IRQ is enabled -> sending data is in progress */
if (dev(uart)->INTENSET.reg & SERCOM_USART_INTENSET_DRE) {
pm_unblock(SAM0_UART_PM_BLOCK);
}
}
#endif
dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE);
irq_restore(state);
sercom_clk_dis(dev(uart));
}
#ifdef MODULE_PERIPH_UART_COLLISION
bool uart_collision_detected(uart_t uart)
{
/* In case of collision, the CTRLB register
* will be in sync during disabling of TX,
* then the flag will be set.
*/
_syncbusy(dev(uart));
bool collision = dev(uart)->STATUS.reg & SERCOM_USART_STATUS_COLL;
dev(uart)->STATUS.reg = SERCOM_USART_STATUS_COLL;
return collision;
}
void uart_collision_detect_enable(uart_t uart)
{
/* CTRLB is enable protected */
dev(uart)->CTRLA.reg &= ~SERCOM_USART_CTRLA_ENABLE;
_syncbusy(dev(uart));
/* clear stale collision flag */
dev(uart)->STATUS.reg = SERCOM_USART_STATUS_COLL;
/* enable collision detection */
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_COLDEN;
/* disable RX interrupt */
dev(uart)->INTENCLR.reg = SERCOM_USART_INTENCLR_RXC;
/* re-enable UART */
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
/* wait for config to be applied */
_syncbusy(dev(uart));
}
static void _drain_rxbuf(SercomUsart *dev)
{
/* clear readback bytes from receive buffer */
while (dev->INTFLAG.reg & SERCOM_USART_INTFLAG_RXC) {
dev->DATA.reg;
}
}
void uart_collision_detect_disable(uart_t uart)
{
uint32_t ctrlb = dev(uart)->CTRLB.reg;
/* re-enable TX after collision */
ctrlb |= SERCOM_USART_CTRLB_TXEN;
/* disable collision detection */
ctrlb &= ~SERCOM_USART_CTRLB_COLDEN;
/* CTRLB is enable protected */
dev(uart)->CTRLA.reg &= ~SERCOM_USART_CTRLA_ENABLE;
_syncbusy(dev(uart));
dev(uart)->CTRLB.reg = ctrlb;
/* re-enable UART */
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
/* wait for config to be applied */
_syncbusy(dev(uart));
/* clear bytes from RX buffer */
_drain_rxbuf(dev(uart));
/* re-enable RX complete IRQ */
if (uart_ctx[uart].rx_cb) {
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
}
}
#endif
#ifdef MODULE_PERIPH_UART_MODECFG
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
uart_stop_bits_t stop_bits)
{
if (uart >= UART_NUMOF) {
return UART_NODEV;
}
if (stop_bits != UART_STOP_BITS_1 && stop_bits != UART_STOP_BITS_2) {
return UART_NOMODE;
}
if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN &&
parity != UART_PARITY_ODD) {
return UART_NOMODE;
}
/* Disable UART first to remove write protect */
dev(uart)->CTRLA.reg &= ~SERCOM_USART_CTRLA_ENABLE;
_syncbusy(dev(uart));
uint32_t ctrlb = dev(uart)->CTRLB.reg;
if (parity == UART_PARITY_NONE) {
dev(uart)->CTRLA.reg &= ~SERCOM_USART_CTRLA_FORM_Msk;
}
else {
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_FORM(1);
if (parity == UART_PARITY_ODD) {
ctrlb |= SERCOM_USART_CTRLB_PMODE;
}
else {
ctrlb &= ~SERCOM_USART_CTRLB_PMODE;
}
}
if (stop_bits == UART_STOP_BITS_1) {
ctrlb &= ~SERCOM_USART_CTRLB_SBMODE;
}
else {
ctrlb |= SERCOM_USART_CTRLB_SBMODE;
}
dev(uart)->CTRLB.reg = ((ctrlb & ~SERCOM_USART_CTRLB_CHSIZE_Msk) |
SERCOM_USART_CTRLB_CHSIZE(data_bits));
/* Enable UART again */
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
_syncbusy(dev(uart));
return UART_OK;
}
#endif /* MODULE_PERIPH_UART_MODECFG */
#ifdef MODULE_PERIPH_UART_RXSTART_IRQ
void uart_rxstart_irq_configure(uart_t uart, uart_rxstart_cb_t cb, void *arg)
{
/* CTRLB is enable-proteced */
dev(uart)->CTRLA.reg &= ~SERCOM_USART_CTRLA_ENABLE;
/* set start of frame detection enable */
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE;
uart_ctx[uart].rxs_cb = cb;
uart_ctx[uart].rxs_arg = arg;
/* enable UART again */
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
}
void uart_rxstart_irq_enable(uart_t uart)
{
/* clear stale interrupt flag */
dev(uart)->INTFLAG.reg = SERCOM_USART_INTFLAG_RXS;
/* enable interrupt */
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXS;
}
void uart_rxstart_irq_disable(uart_t uart)
{
dev(uart)->INTENCLR.reg = SERCOM_USART_INTENCLR_RXS;
}
#endif /* MODULE_PERIPH_UART_RXSTART_IRQ */
#ifdef MODULE_PERIPH_UART_NONBLOCKING
static inline void irq_handler_tx(unsigned uartnum)
{
/* workaround for saml1x */
int c = tsrb_get_one(&uart_tx_rb[uartnum]);
if (c >= 0) {
dev(uartnum)->DATA.reg = c;
}
/* disable the interrupt if there are no more bytes to send */
if (tsrb_empty(&uart_tx_rb[uartnum])) {
dev(uartnum)->INTENCLR.reg = SERCOM_USART_INTENSET_DRE;
#if IS_ACTIVE(MODULE_PM_LAYERED) && defined(SAM0_UART_PM_BLOCK)
/* we really should be in IRQ context! */
assert(irq_is_in());
pm_unblock(SAM0_UART_PM_BLOCK);
#endif
}
}
#endif
static inline void irq_handler(unsigned uartnum)
{
uint32_t status = dev(uartnum)->INTFLAG.reg;
/* TXC is used by uart_write() */
dev(uartnum)->INTFLAG.reg = status & ~SERCOM_USART_INTFLAG_TXC;
#if !defined(UART_HAS_TX_ISR) && defined(MODULE_PERIPH_UART_NONBLOCKING)
if ((status & SERCOM_USART_INTFLAG_DRE) &&
(dev(uartnum)->INTENSET.reg & SERCOM_USART_INTENSET_DRE)) {
irq_handler_tx(uartnum);
}
#endif
#ifdef MODULE_PERIPH_UART_RXSTART_IRQ
if ((status & SERCOM_USART_INTFLAG_RXS) &&
(dev(uartnum)->INTENSET.reg & SERCOM_USART_INTENSET_RXS)) {
uart_ctx[uartnum].rxs_cb(uart_ctx[uartnum].rxs_arg);
}
#endif
if (status & SERCOM_USART_INTFLAG_RXC) {
/* interrupt flag is cleared by reading the data register */
uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg,
(uint8_t)(dev(uartnum)->DATA.reg));
}
cortexm_isr_end();
}
#ifdef UART_0_ISR
void UART_0_ISR(void)
{
irq_handler(0);
}
#endif
#ifdef UART_1_ISR
void UART_1_ISR(void)
{
irq_handler(1);
}
#endif
#ifdef UART_2_ISR
void UART_2_ISR(void)
{
irq_handler(2);
}
#endif
#ifdef UART_3_ISR
void UART_3_ISR(void)
{
irq_handler(3);
}
#endif
#ifdef UART_4_ISR
void UART_4_ISR(void)
{
irq_handler(4);
}
#endif
#ifdef UART_5_ISR
void UART_5_ISR(void)
{
irq_handler(5);
}
#endif
#ifdef MODULE_PERIPH_UART_NONBLOCKING
#ifdef UART_0_ISR_TX
void UART_0_ISR_TX(void)
{
irq_handler_tx(0);
}
#endif
#ifdef UART_1_ISR_TX
void UART_1_ISR_TX(void)
{
irq_handler_tx(1);
}
#endif
#ifdef UART_2_ISR_TX
void UART_2_ISR_TX(void)
{
irq_handler_tx(2);
}
#endif
#ifdef UART_3_ISR_TX
void UART_3_ISR_TX(void)
{
irq_handler_tx(3);
}
#endif
#ifdef UART_4_ISR_TX
void UART_4_ISR_TX(void)
{
irq_handler_tx(4);
}
#endif
#ifdef UART_5_ISR_TX
void UART_5_ISR_TX(void)
{
irq_handler_tx(5);
}
#endif
#endif /* MODULE_PERIPH_UART_NONBLOCKING */