bb708e2f9c
19109: cpu/gd32v: fix and extend Kconfig clock settings r=benpicco a=gschorcht ### Contribution description This PR fixes the following issus of the clock configuration which led to highly deviating peripheral clocks so that the UART interface was not usable in my case: 1. Setting the `RCU_CTL` register just to the IRC8M bit also removes the IRC8M calibration and trim adjust value in this register. Therefore IRC8M calibration and trim adjust value have to be preserved and the IRC8M has to be set. 2. `CLOCK_HXTAL` is a value and not a flag, so that shifting to the left changes anything in the register but does not set the PLLSEL bit. `RCU_CFG0_PLLSEL_Msk` has to be used instead to set the PLLSEL bit. 3. `CONFIG_BOARD_HAS_HXTAL` is used to indicate that the board has an HXTAL connected. If the HXTAL is present, it is used as PLL clock source. But if the HXTAL is not present, the half IRC8M clock should be used as PLL clock source and must not be disabled at the end of clock settings. Using IRC8M clock as PLL clock source also requires another PLL multiplication factor. Issues 1 and 2 led to the problem that IRC8M was used without calibration instead of HXTAL. With the fixes, the GD32V is working with as well as without HXTAL correctly. Furthermore, the Kconfig configuration has been extended. It is now possible to configure the HXTAL frequency as well, since the GD32VF103 allows HXTAL clocks from 3 MHz to 25 MHz. This has currently been added directly to the board's Kconfig, as it is currently the only GD32VF103 board. It should be moved to a common Kconfig later when more GD32V boards are added. ### Testing procedure `BOARD=seeedstudio-gd32 make -C tests/shell flash term` should still work. ### Issues/PRs references Co-authored-by: Gunar Schorcht <gunar@schorcht.net> |
||
---|---|---|
.cargo | ||
.github | ||
.vscode | ||
boards | ||
bootloaders | ||
core | ||
cpu | ||
dist | ||
doc | ||
drivers | ||
examples | ||
fuzzing | ||
kconfigs | ||
makefiles | ||
pkg | ||
sys | ||
tests | ||
.bandit | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.murdock | ||
.murdock.yml | ||
bors.toml | ||
CITATION.cff | ||
CODE_OF_CONDUCT.md | ||
CODEOWNERS | ||
CODING_CONVENTIONS_C++.md | ||
CODING_CONVENTIONS.md | ||
CONTRIBUTING.md | ||
doc.txt | ||
Kconfig | ||
LICENSE | ||
LOSTANDFOUND.md | ||
MAINTAINING.md | ||
Makefile | ||
Makefile.base | ||
Makefile.dep | ||
Makefile.features | ||
Makefile.include | ||
README.md | ||
release-notes.txt | ||
SECURITY.md | ||
uncrustify-riot.cfg | ||
Vagrantfile |
The friendly Operating System for IoT!
RIOT is a real-time multi-threading operating system that supports a range of devices that are typically found in the Internet of Things (IoT): 8-bit, 16-bit and 32-bit microcontrollers.
RIOT is based on the following design principles: energy-efficiency, real-time capabilities, small memory footprint, modularity, and uniform API access, independent of the underlying hardware (this API offers partial POSIX compliance).
RIOT is developed by an international open source community which is independent of specific vendors (e.g. similarly to the Linux community). RIOT is licensed with LGPLv2.1, a copyleft license which fosters indirect business models around the free open-source software platform provided by RIOT, e.g. it is possible to link closed-source code with the LGPL code.
FEATURES
RIOT provides features including, but not limited to:
- a preemptive, tickless scheduler with priorities
- flexible memory management
- high resolution, long-term timers
- MTD abstraction layer
- File System integration
- support 200+ boards based on AVR, MSP430, ESP8266, ESP32, RISC-V, ARM7 and ARM Cortex-M
- the native port allows to run RIOT as-is on Linux and BSD. Multiple instances of RIOT running on a single machine can also be interconnected via a simple virtual Ethernet bridge or via a simulated IEEE 802.15.4 network (ZEP)
- IPv6
- 6LoWPAN (RFC4944, RFC6282, and RFC6775)
- UDP
- RPL (storing mode, P2P mode)
- CoAP
- OTA updates via SUIT
- MQTT
- USB (device mode)
- Display / Touchscreen support
- CCN-Lite
- LoRaWAN
- UWB
- Bluetooth (BLE) via NimBLE
GETTING RIOT
The most convenient way to get RIOT is to clone it via Git
$ git clone https://github.com/RIOT-OS/RIOT
this will ensure that you get all the newest features and bug fixes with the caveat of an ever changing work environment.
If you prefer things more stable, you can download the source code of one of our quarter annual releases via Github as ZIP file or tarball. You can also checkout a release in a cloned Git repository using
$ git pull --tags
$ git checkout <YYYY.MM>
For more details on our release cycle, check our documentation.
GETTING STARTED
- You want to start the RIOT? Just follow our quickstart guide or try this tutorial. For specific toolchain installation, follow instructions in the getting started page.
- The RIOT API itself can be built from the code using doxygen. The latest version of the documentation is uploaded daily to doc.riot-os.org.
FORUM
Do you have a question, want to discuss a new feature, or just want to present your latest project using RIOT? Come over to our forum and post to your hearts content.
CONTRIBUTE
To contribute something to RIOT, please refer to our contributing document.
MAILING LISTS
- RIOT commits: commits@riot-os.org
- Github notifications: notifications@riot-os.org
LICENSE
- Most of the code developed by the RIOT community is licensed under the GNU Lesser General Public License (LGPL) version 2.1 as published by the Free Software Foundation.
- Some external sources, especially files developed by SICS are published under a separate license.
All code files contain licensing information.
For more information, see the RIOT website: