1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/sam0_common/periph/spi.c
Marian Buschsieweke f04b522601
cpu/periph_spi: update implementations to new API
Make all spi_acquire() implementations return `void` and add assertions to
check for valid parameters, where missing.
2021-09-01 21:38:40 +02:00

525 lines
13 KiB
C

/*
* Copyright (C) 2014-2016 Freie Universität Berlin
* 2015 Kaspar Schleiser <kaspar@schleiser.de>
* 2015 FreshTemp, LLC.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_spi
* @{
*
* @file
* @brief Low-level SPI driver implementation
*
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
*
* @}
*/
#include <assert.h>
#include "cpu.h"
#include "mutex.h"
#include "periph/spi.h"
#include "pm_layered.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/**
* @brief Array holding one pre-initialized mutex for each SPI device
*/
static mutex_t locks[SPI_NUMOF];
#ifdef MODULE_PERIPH_DMA
struct dma_state {
dma_t tx_dma;
dma_t rx_dma;
};
static struct dma_state _dma_state[SPI_NUMOF];
static DmacDescriptor DMA_DESCRIPTOR_ATTRS tx_desc[SPI_NUMOF];
static DmacDescriptor DMA_DESCRIPTOR_ATTRS rx_desc[SPI_NUMOF];
#endif
/**
* @brief Shortcut for accessing the used SPI SERCOM device
*/
static inline SercomSpi *dev(spi_t bus)
{
return (SercomSpi *)spi_config[bus].dev;
}
static inline bool _is_qspi(spi_t bus)
{
#ifdef MODULE_PERIPH_SPI_ON_QSPI
return (void*)spi_config[bus].dev == (void*)QSPI;
#else
(void)bus;
return false;
#endif
}
static inline void _qspi_clk(unsigned on)
{
#ifdef QSPI
/* enable/disable QSPI clock */
MCLK->APBCMASK.bit.QSPI_ = on;
#else
(void)on;
#endif
}
static inline void poweron(spi_t bus)
{
if (_is_qspi(bus)) {
_qspi_clk(1);
} else {
sercom_clk_en(dev(bus));
}
}
static inline void poweroff(spi_t bus)
{
if (_is_qspi(bus)) {
_qspi_clk(0);
} else {
sercom_clk_dis(dev(bus));
}
}
static inline void _reset(SercomSpi *dev)
{
dev->CTRLA.reg |= SERCOM_SPI_CTRLA_SWRST;
while (dev->CTRLA.reg & SERCOM_SPI_CTRLA_SWRST) {}
#ifdef SERCOM_SPI_STATUS_SYNCBUSY
while (dev->STATUS.bit.SYNCBUSY) {}
#else
while (dev->SYNCBUSY.bit.SWRST) {}
#endif
}
static inline void _disable(SercomSpi *dev)
{
dev->CTRLA.reg = 0;
#ifdef SERCOM_SPI_STATUS_SYNCBUSY
while (dev->STATUS.bit.SYNCBUSY) {}
#else
while (dev->SYNCBUSY.reg) {}
#endif
}
static inline void _enable(SercomSpi *dev)
{
dev->CTRLA.bit.ENABLE = 1;
#ifdef SERCOM_SPI_STATUS_SYNCBUSY
while (dev->STATUS.bit.SYNCBUSY) {}
#else
while (dev->SYNCBUSY.reg) {}
#endif
}
static inline bool _use_dma(spi_t bus)
{
#ifdef MODULE_PERIPH_DMA
return (spi_config[bus].tx_trigger != DMA_TRIGGER_DISABLED) &&
(spi_config[bus].rx_trigger != DMA_TRIGGER_DISABLED);
#else
(void)bus;
return false;
#endif
}
static inline void _init_dma(spi_t bus, const volatile void *reg_rx, volatile void *reg_tx)
{
if (!_use_dma(bus)) {
return;
}
#ifdef MODULE_PERIPH_DMA
_dma_state[bus].rx_dma = dma_acquire_channel();
_dma_state[bus].tx_dma = dma_acquire_channel();
dma_setup(_dma_state[bus].tx_dma,
spi_config[bus].tx_trigger, 0, false);
dma_setup(_dma_state[bus].rx_dma,
spi_config[bus].rx_trigger, 1, true);
dma_prepare(_dma_state[bus].rx_dma, DMAC_BTCTRL_BEATSIZE_BYTE_Val,
(void*)reg_rx, NULL, 1, 0);
dma_prepare(_dma_state[bus].tx_dma, DMAC_BTCTRL_BEATSIZE_BYTE_Val,
NULL, (void*)reg_tx, 0, 0);
#else
(void)reg_rx;
(void)reg_tx;
#endif
}
/**
* @brief QSPI peripheral in SPI mode
* @{
*/
#ifdef QSPI
static void _init_qspi(spi_t bus)
{
/* reset the peripheral */
QSPI->CTRLA.bit.SWRST = 1;
QSPI->CTRLB.reg = QSPI_CTRLB_MODE_SPI
| QSPI_CTRLB_CSMODE_LASTXFER
| QSPI_CTRLB_DATALEN_8BITS;
/* set up DMA channels */
_init_dma(bus, &QSPI->RXDATA.reg, &QSPI->TXDATA.reg);
}
static void _qspi_acquire(spi_mode_t mode, spi_clk_t clk)
{
/* datasheet says SCK = MCK / (BAUD + 1) */
/* but BAUD = 0 does not work, assume SCK = MCK / BAUD */
uint32_t baud = CLOCK_CORECLOCK > (2 * clk)
? (CLOCK_CORECLOCK + clk - 1) / clk
: 1;
/* bit order is reversed from SERCOM SPI */
uint32_t _mode = (mode >> 1)
| (mode << 1);
_mode &= 0x3;
QSPI->CTRLA.bit.ENABLE = 1;
QSPI->BAUD.reg = QSPI_BAUD_BAUD(baud) | _mode;
}
static inline void _qspi_release(void)
{
QSPI->CTRLA.bit.ENABLE = 0;
}
static void _qspi_blocking_transfer(const void *out, void *in, size_t len)
{
const uint8_t *out_buf = out;
uint8_t *in_buf = in;
for (size_t i = 0; i < len; i++) {
uint8_t tmp = out_buf ? out_buf[i] : 0;
/* transmit byte on MOSI */
QSPI->TXDATA.reg = tmp;
/* wait until byte has been sampled on MISO */
while (QSPI->INTFLAG.bit.RXC == 0) {}
/* consume the byte */
tmp = QSPI->RXDATA.reg;
if (in_buf) {
in_buf[i] = tmp;
}
}
}
#else /* !QSPI */
void _init_qspi(spi_t bus);
void _qspi_acquire(spi_mode_t mode, spi_clk_t clk);
void _qspi_release(void);
void _qspi_blocking_transfer(const void *out, void *in, size_t len);
#endif
/** @} */
/**
* @brief SERCOM peripheral in SPI mode
* @{
*/
static void _init_spi(spi_t bus, SercomSpi *dev)
{
/* reset all device configuration */
_reset(dev);
/* configure base clock */
sercom_set_gen(dev, spi_config[bus].gclk_src);
/* enable receiver and configure character size to 8-bit
* no synchronization needed, as SERCOM device is not enabled */
dev->CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN;
/* set up DMA channels */
_init_dma(bus, &dev->DATA.reg, &dev->DATA.reg);
}
static void _spi_acquire(spi_t bus, spi_mode_t mode, spi_clk_t clk)
{
/* configure bus clock, in synchronous mode its calculated from
* BAUD.reg = (f_ref / (2 * f_bus) - 1)
* with f_ref := CLOCK_CORECLOCK as defined by the board
* to mitigate the rounding error due to integer arithmetic, the
* equation is modified to
* BAUD.reg = ((f_ref + f_bus) / (2 * f_bus) - 1) */
const uint8_t baud = ((sam0_gclk_freq(spi_config[bus].gclk_src) + clk) / (2 * clk) - 1);
/* configure device to be master and set mode and pads,
*
* NOTE: we could configure the pads already during spi_init, but for
* efficiency reason we do that here, so we can do all in one single write
* to the CTRLA register */
const uint32_t ctrla = SERCOM_SPI_CTRLA_MODE(0x3) /* 0x3 -> master */
| SERCOM_SPI_CTRLA_DOPO(spi_config[bus].mosi_pad)
| SERCOM_SPI_CTRLA_DIPO(spi_config[bus].miso_pad)
| (mode << SERCOM_SPI_CTRLA_CPHA_Pos);
/* first configuration or reconfiguration after altered device usage */
if (dev(bus)->BAUD.reg != baud || dev(bus)->CTRLA.reg != ctrla) {
/* disable the device */
_disable(dev(bus));
dev(bus)->BAUD.reg = baud;
dev(bus)->CTRLA.reg = ctrla;
/* no synchronization needed here, the enable synchronization below
* acts as a write-synchronization for both registers */
}
/* finally enable the device */
_enable(dev(bus));
}
static inline void _spi_release(spi_t bus)
{
/* disable the device */
_disable(dev(bus));
}
static void _spi_blocking_transfer(spi_t bus, const void *out, void *in, size_t len)
{
const uint8_t *out_buf = out;
uint8_t *in_buf = in;
for (size_t i = 0; i < len; i++) {
uint8_t tmp = (out_buf) ? out_buf[i] : 0;
/* transmit byte on MOSI */
dev(bus)->DATA.reg = tmp;
/* wait until byte has been sampled on MISO */
while (dev(bus)->INTFLAG.bit.RXC == 0) {}
/* consume the byte */
tmp = dev(bus)->DATA.reg;
if (in_buf) {
in_buf[i] = tmp;
}
}
}
/** @} */
void spi_init(spi_t bus)
{
/* make sure given bus is good */
assert(bus < SPI_NUMOF);
/* initialize the device lock */
mutex_init(&locks[bus]);
/* configure pins and their muxes */
spi_init_pins(bus);
/* wake up device */
poweron(bus);
if (_is_qspi(bus)) {
_init_qspi(bus);
} else {
_init_spi(bus, dev(bus));
}
/* put device back to sleep */
poweroff(bus);
}
void spi_init_pins(spi_t bus)
{
/* MISO must always have PD/PU, see #5968. This is a ~65uA difference */
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_init(spi_config[bus].miso_pin, GPIO_IN_PD);
gpio_init_mux(spi_config[bus].miso_pin, spi_config[bus].miso_mux);
}
gpio_init(spi_config[bus].mosi_pin, GPIO_OUT);
gpio_init_mux(spi_config[bus].mosi_pin, spi_config[bus].mosi_mux);
gpio_init(spi_config[bus].clk_pin, GPIO_OUT);
/* clk_pin will be muxed during acquire / release */
mutex_unlock(&locks[bus]);
}
void spi_deinit_pins(spi_t bus)
{
mutex_lock(&locks[bus]);
if (gpio_is_valid(spi_config[bus].miso_pin)) {
gpio_disable_mux(spi_config[bus].miso_pin);
}
gpio_disable_mux(spi_config[bus].mosi_pin);
}
void spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk)
{
(void)cs;
assert((unsigned)bus < SPI_NUMOF);
/* get exclusive access to the device */
mutex_lock(&locks[bus]);
/* power on the device */
poweron(bus);
if (_is_qspi(bus)) {
_qspi_acquire(mode, clk);
} else {
_spi_acquire(bus, mode, clk);
}
/* mux clk_pin to SPI peripheral */
gpio_init_mux(spi_config[bus].clk_pin, spi_config[bus].clk_mux);
}
void spi_release(spi_t bus)
{
/* Demux clk_pin back to GPIO_OUT function. Otherwise it will get HIGH-Z
* and lead to unexpected current draw by SPI salves. */
gpio_disable_mux(spi_config[bus].clk_pin);
if (_is_qspi(bus)) {
_qspi_release();
} else {
_spi_release(bus);
}
/* power off the device */
poweroff(bus);
/* release access to the device */
mutex_unlock(&locks[bus]);
}
static void _blocking_transfer(spi_t bus, const void *out, void *in, size_t len)
{
if (_is_qspi(bus)) {
_qspi_blocking_transfer(out, in, len);
} else {
_spi_blocking_transfer(bus, out, in, len);
}
}
#ifdef MODULE_PERIPH_DMA
static void _dma_execute(spi_t bus)
{
#if defined(CPU_COMMON_SAMD21)
pm_block(SAMD21_PM_IDLE_1);
#endif
dma_start(_dma_state[bus].rx_dma);
dma_start(_dma_state[bus].tx_dma);
dma_wait(_dma_state[bus].rx_dma);
#if defined(CPU_COMMON_SAMD21)
pm_unblock(SAMD21_PM_IDLE_1);
#endif
}
static void _dma_transfer(spi_t bus, const uint8_t *out, uint8_t *in,
size_t len)
{
uint8_t tmp = 0;
const uint8_t *out_addr = out ? out + len : &tmp;
uint8_t *in_addr = in ? in + len : &tmp;
dma_prepare_dst(_dma_state[bus].rx_dma, in_addr, len, in ? true : false);
dma_prepare_src(_dma_state[bus].tx_dma, out_addr, len, out ? true : false);
_dma_execute(bus);
}
static void _dma_transfer_regs(spi_t bus, uint8_t reg, const uint8_t *out,
uint8_t *in, size_t len)
{
uint8_t tmp;
const uint8_t *out_addr = out ? out + len : &tmp;
uint8_t *in_addr = in ? in + len : &tmp;
dma_prepare_dst(_dma_state[bus].rx_dma, &tmp, 1, false);
dma_prepare_src(_dma_state[bus].tx_dma, &reg, 1, false);
dma_append_dst(_dma_state[bus].rx_dma, &rx_desc[bus], in_addr,
len, in ? true : false);
dma_append_src(_dma_state[bus].tx_dma, &tx_desc[bus], out_addr,
len, out ? true : false);
_dma_execute(bus);
}
void spi_transfer_regs(spi_t bus, spi_cs_t cs,
uint8_t reg, const void *out, void *in, size_t len)
{
if (cs != SPI_CS_UNDEF) {
gpio_clear((gpio_t)cs);
}
if (_use_dma(bus)) {
/* The DMA promises not to modify the const out data */
_dma_transfer_regs(bus, reg, out, in, len);
}
else {
_blocking_transfer(bus, &reg, NULL, 1);
_blocking_transfer(bus, out, in, len);
}
if (cs != SPI_CS_UNDEF) {
gpio_set((gpio_t)cs);
}
}
uint8_t spi_transfer_reg(spi_t bus, spi_cs_t cs, uint8_t reg, uint8_t out)
{
uint8_t res;
spi_transfer_regs(bus, cs, reg, &out, &res, 1);
return res;
}
#endif /* MODULE_PERIPH_DMA */
void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont,
const void *out, void *in, size_t len)
{
assert(out || in);
if (cs != SPI_CS_UNDEF) {
gpio_clear((gpio_t)cs);
}
if (_use_dma(bus)) {
#ifdef MODULE_PERIPH_DMA
/* The DMA promises not to modify the const out data */
_dma_transfer(bus, out, in, len);
#endif
}
else {
_blocking_transfer(bus, out, in, len);
}
if ((!cont) && (cs != SPI_CS_UNDEF)) {
gpio_set((gpio_t)cs);
}
}