mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 09:52:45 +01:00
3.1 KiB
3.1 KiB
TensorFlow Lite sample application
This application contains several examples of usage of TensorFlow Lite for microcontrollers:
- The default example,
mnist
contains a complete example to perform hand-written digit recognition: it shows how to train a very simple MLP (Multi-Layer Perceptron) model and how to reuse it in a RIOT application. The code of this example is provided as an external module in the mnist directory. - The other example, Hello World,
taken as-is from TensorFlow Lite code, simply replicates a
sine
function from a trained model.
To get started with TensorFlow Lite on microcontrollers, please refer to this page.
Usage
Simply run the application on the board of your choice using:
make BOARD=<board of your choice> -C tests/pkg/tensorflow-lite flash term
Set EXAMPLE=hello_world
from the command line to try the upstream hello_world
example.
Then type 's' to start the application.
Examples details
mnist
expected output
Digit prediction: 7
scripts usage
First, install tensorflow:
pip3 install --user tensorflow
The scripts require TensorFlow >= 2, so a fairly recent version of pip is required.
The mnist_mlp
example comes with 2 Python scripts:
mnist_mlp.py
is used to train and store the model. To minimize the size of the generated model, the script uses post-training quantization. The quantized model is stored in themodel.tflite
file in the FlatBuffers format and is embedded in the application using the BLOB mechanism.generate_digit.py
is used to generate thedigit
from the MNIST dataset test data. The default digit generated corresponds to a 7. Use the-i
option to choose another digit. The script displays the generated digit so you can compare with the prediction made by the RIOT application. Note that after a new digit is generated the firmware has to be rebuilt so that it embeds the array containing the pixel values.
hello_world
expected output
The application prints the values of the sine
function:
x_value: 1.0*2^-127, y_value: 1.9783614*2^-8
x_value: 1.2566366*2^-2, y_value: 1.3910355*2^-2
x_value: 1.2566366*2^-1, y_value: 1.1282844*2^-1
x_value: 1.8849551*2^-1, y_value: 1.5455950*2^-1
x_value: 1.2566366*2^0, y_value: 1.8238020*2^-1
x_value: 1.5707957*2^0, y_value: 1.8701699*2^-1
x_value: 1.8849551*2^0, y_value: 1.8547139*2^-1
x_value: 1.995567*2^1, y_value: 1.4683149*2^-1
x_value: 1.2566366*2^1, y_value: 1.1128282*2^-1
x_value: 1.4137159*2^1, y_value: 1.819164*2^-2
x_value: 1.5707957*2^1, y_value: -1.2364758*2^-5
x_value: 1.7278753*2^1, y_value: -1.6074185*2^-2
x_value: 1.8849551*2^1, y_value: -1.2982997*2^-1
x_value: 1.210171*2^2, y_value: -1.7928901*2^-1
x_value: 1.995567*2^2, y_value: -1.46367*2^0
x_value: 1.1780966*2^2, y_value: -1.46367*2^0