mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-18 12:52:44 +01:00
602 lines
15 KiB
C
602 lines
15 KiB
C
/*
|
|
* Copyright (C) 2015 Freie Universität Berlin
|
|
* 2015 FreshTemp, LLC.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_sam0_common
|
|
* @ingroup drivers_periph_uart
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level UART driver implementation
|
|
*
|
|
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
|
|
* @author Troels Hoffmeyer <troels.d.hoffmeyer@gmail.com>
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Dylan Laduranty <dylanladuranty@gmail.com>
|
|
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include "cpu.h"
|
|
|
|
#include "periph/uart.h"
|
|
#include "periph/gpio.h"
|
|
|
|
#define ENABLE_DEBUG 0
|
|
#include "debug.h"
|
|
|
|
#if defined (CPU_COMMON_SAML1X) || defined (CPU_COMMON_SAMD5X)
|
|
#define UART_HAS_TX_ISR
|
|
#endif
|
|
|
|
/* default to fractional baud rate calculation */
|
|
#if !defined(CONFIG_SAM0_UART_BAUD_FRAC) && defined(SERCOM_USART_BAUD_FRAC_BAUD)
|
|
/* SAML21 has no fractional baud rate on SERCOM5 */
|
|
#if defined(CPU_SAML21)
|
|
#define CONFIG_SAM0_UART_BAUD_FRAC 0
|
|
#else
|
|
#define CONFIG_SAM0_UART_BAUD_FRAC 1
|
|
#endif
|
|
#endif
|
|
|
|
/* SAMD20 defines no generic macro */
|
|
#ifdef SERCOM_USART_CTRLA_TXPO_PAD0
|
|
#undef SERCOM_USART_CTRLA_TXPO
|
|
#define SERCOM_USART_CTRLA_TXPO(n) ((n) << SERCOM_USART_CTRLA_TXPO_Pos)
|
|
#endif
|
|
|
|
/**
|
|
* @brief Allocate memory to store the callback functions & buffers
|
|
*/
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
#include "tsrb.h"
|
|
static tsrb_t uart_tx_rb[UART_NUMOF];
|
|
static uint8_t uart_tx_rb_buf[UART_NUMOF][UART_TXBUF_SIZE];
|
|
#endif
|
|
static uart_isr_ctx_t uart_ctx[UART_NUMOF];
|
|
|
|
/**
|
|
* @brief Get the pointer to the base register of the given UART device
|
|
*
|
|
* @param[in] dev UART device identifier
|
|
*
|
|
* @return base register address
|
|
*/
|
|
static inline SercomUsart *dev(uart_t dev)
|
|
{
|
|
return uart_config[dev].dev;
|
|
}
|
|
|
|
static inline void _syncbusy(SercomUsart *dev)
|
|
{
|
|
#ifdef SERCOM_USART_SYNCBUSY_MASK
|
|
while (dev->SYNCBUSY.reg) {}
|
|
#else
|
|
while (dev->STATUS.bit.SYNCBUSY) {}
|
|
#endif
|
|
}
|
|
|
|
static inline void _reset(SercomUsart *dev)
|
|
{
|
|
dev->CTRLA.reg = SERCOM_USART_CTRLA_SWRST;
|
|
while (dev->CTRLA.reg & SERCOM_SPI_CTRLA_SWRST) {}
|
|
|
|
#ifdef SERCOM_USART_SYNCBUSY_MASK
|
|
while (dev->SYNCBUSY.bit.SWRST) {}
|
|
#else
|
|
while (dev->STATUS.bit.SYNCBUSY) {}
|
|
#endif
|
|
}
|
|
|
|
static void _set_baud(uart_t uart, uint32_t baudrate)
|
|
{
|
|
const uint32_t f_src = sam0_gclk_freq(uart_config[uart].gclk_src);
|
|
#if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC)
|
|
/* Asynchronous Fractional */
|
|
uint32_t baud = (((f_src * 8) / baudrate) / 16);
|
|
dev(uart)->BAUD.FRAC.FP = (baud % 8);
|
|
dev(uart)->BAUD.FRAC.BAUD = (baud / 8);
|
|
#else
|
|
/* Asynchronous Arithmetic */
|
|
/* BAUD = 2^16 * (2^0 - 2^4 * f_baud / f_src) */
|
|
/* = 2^(16-n) * (2^n - 2^(n+4) * f_baud / f_src) */
|
|
/* = 2^(20-n) * (2^(n-4) - 2^n * f_baud / f_src) */
|
|
|
|
/* 2^n * f_baud < 2^32 -> find the next power of 2 */
|
|
uint8_t pow = __builtin_clz(baudrate);
|
|
|
|
/* 2^n * f_baud */
|
|
baudrate <<= pow;
|
|
|
|
/* (2^(n-4) - 2^n * f_baud / f_src) */
|
|
uint32_t tmp = (1 << (pow - 4)) - baudrate / f_src;
|
|
uint32_t rem = baudrate % f_src;
|
|
|
|
uint8_t scale = 20 - pow;
|
|
dev(uart)->BAUD.reg = (tmp << scale) - (rem << scale) / f_src;
|
|
#endif
|
|
}
|
|
|
|
static void _configure_pins(uart_t uart)
|
|
{
|
|
/* configure RX pin */
|
|
if (uart_config[uart].rx_pin != GPIO_UNDEF) {
|
|
gpio_init(uart_config[uart].rx_pin, GPIO_IN);
|
|
gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux);
|
|
}
|
|
|
|
/* configure TX pin */
|
|
if (uart_config[uart].tx_pin != GPIO_UNDEF) {
|
|
gpio_set(uart_config[uart].tx_pin);
|
|
gpio_init(uart_config[uart].tx_pin, GPIO_OUT);
|
|
gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux);
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
/* If RTS/CTS needed, enable them */
|
|
if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) {
|
|
/* Ensure RTS is defined */
|
|
if (uart_config[uart].rts_pin != GPIO_UNDEF) {
|
|
gpio_init_mux(uart_config[uart].rts_pin, uart_config[uart].mux);
|
|
}
|
|
/* Ensure CTS is defined */
|
|
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
|
|
gpio_init_mux(uart_config[uart].cts_pin, uart_config[uart].mux);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
|
|
{
|
|
if (uart >= UART_NUMOF) {
|
|
return UART_NODEV;
|
|
}
|
|
|
|
/* must disable here first to ensure idempotency */
|
|
dev(uart)->CTRLA.reg = 0;
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
/* set up the TX buffer */
|
|
tsrb_init(&uart_tx_rb[uart], uart_tx_rb_buf[uart], UART_TXBUF_SIZE);
|
|
#endif
|
|
|
|
/* configure pins */
|
|
_configure_pins(uart);
|
|
|
|
/* enable peripheral clock */
|
|
sercom_clk_en(dev(uart));
|
|
|
|
/* reset the UART device */
|
|
_reset(dev(uart));
|
|
|
|
/* configure clock generator */
|
|
sercom_set_gen(dev(uart), uart_config[uart].gclk_src);
|
|
|
|
/* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified
|
|
* by the board in the periph_conf.h, x16 sampling and use internal clock */
|
|
dev(uart)->CTRLA.reg = SERCOM_USART_CTRLA_DORD
|
|
#if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC)
|
|
/* enable Asynchronous Fractional mode */
|
|
| SERCOM_USART_CTRLA_SAMPR(0x1)
|
|
#endif
|
|
| SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad)
|
|
| SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad)
|
|
| SERCOM_USART_CTRLA_MODE(0x1);
|
|
|
|
/* Set run in standby mode if enabled */
|
|
if (uart_config[uart].flags & UART_FLAG_RUN_STANDBY) {
|
|
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_RUNSTDBY;
|
|
}
|
|
|
|
/* calculate and set baudrate */
|
|
_set_baud(uart, baudrate);
|
|
|
|
/* enable transmitter, and configure 8N1 mode */
|
|
if (uart_config[uart].tx_pin != GPIO_UNDEF) {
|
|
dev(uart)->CTRLB.reg = SERCOM_USART_CTRLB_TXEN;
|
|
} else {
|
|
dev(uart)->CTRLB.reg = 0;
|
|
}
|
|
|
|
/* enable receiver and RX interrupt if configured */
|
|
if ((rx_cb) && (uart_config[uart].rx_pin != GPIO_UNDEF)) {
|
|
uart_ctx[uart].rx_cb = rx_cb;
|
|
uart_ctx[uart].arg = arg;
|
|
#ifdef UART_HAS_TX_ISR
|
|
/* enable RXNE ISR */
|
|
NVIC_EnableIRQ(SERCOM0_2_IRQn + (sercom_id(dev(uart)) * 4));
|
|
#else
|
|
/* enable UART ISR */
|
|
NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart)));
|
|
#endif /* UART_HAS_TX_ISR */
|
|
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_RXEN;
|
|
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXC;
|
|
/* set wakeup receive from sleep if enabled */
|
|
if (uart_config[uart].flags & UART_FLAG_WAKEUP) {
|
|
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE;
|
|
}
|
|
}
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
#ifndef UART_HAS_TX_ISR
|
|
else {
|
|
/* enable UART ISR */
|
|
NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart)));
|
|
}
|
|
#else
|
|
/* enable TXE ISR */
|
|
NVIC_EnableIRQ(SERCOM0_0_IRQn + (sercom_id(dev(uart)) * 4));
|
|
#endif
|
|
#endif /* MODULE_PERIPH_UART_NONBLOCKING */
|
|
|
|
_syncbusy(dev(uart));
|
|
|
|
/* and finally enable the device */
|
|
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
|
|
|
|
return UART_OK;
|
|
}
|
|
|
|
void uart_init_pins(uart_t uart)
|
|
{
|
|
_configure_pins(uart);
|
|
|
|
uart_poweron(uart);
|
|
}
|
|
|
|
void uart_deinit_pins(uart_t uart)
|
|
{
|
|
uart_poweroff(uart);
|
|
|
|
/* de-configure RX pin */
|
|
if (uart_config[uart].rx_pin != GPIO_UNDEF) {
|
|
gpio_disable_mux(uart_config[uart].rx_pin);
|
|
}
|
|
|
|
/* de-configure TX pin */
|
|
if (uart_config[uart].tx_pin != GPIO_UNDEF) {
|
|
gpio_disable_mux(uart_config[uart].tx_pin);
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_UART_HW_FC
|
|
/* If RTS/CTS needed, enable them */
|
|
if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) {
|
|
/* Ensure RTS is defined */
|
|
if (uart_config[uart].rts_pin != GPIO_UNDEF) {
|
|
gpio_disable_mux(uart_config[uart].rts_pin);
|
|
}
|
|
/* Ensure CTS is defined */
|
|
if (uart_config[uart].cts_pin != GPIO_UNDEF) {
|
|
gpio_disable_mux(uart_config[uart].cts_pin);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void uart_write(uart_t uart, const uint8_t *data, size_t len)
|
|
{
|
|
if (uart_config[uart].tx_pin == GPIO_UNDEF) {
|
|
return;
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
for (const void* end = data + len; data != end; ++data) {
|
|
if (irq_is_in() || __get_PRIMASK()) {
|
|
/* if ring buffer is full free up a spot */
|
|
if (tsrb_full(&uart_tx_rb[uart])) {
|
|
while (!dev(uart)->INTFLAG.bit.DRE) {}
|
|
dev(uart)->DATA.reg = tsrb_get_one(&uart_tx_rb[uart]);
|
|
}
|
|
tsrb_add_one(&uart_tx_rb[uart], *data);
|
|
}
|
|
else {
|
|
while (tsrb_add_one(&uart_tx_rb[uart], *data) < 0) {}
|
|
}
|
|
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_DRE;
|
|
}
|
|
#else
|
|
for (const void* end = data + len; data != end; ++data) {
|
|
while (!dev(uart)->INTFLAG.bit.DRE) {}
|
|
dev(uart)->DATA.reg = *data;
|
|
}
|
|
while (!dev(uart)->INTFLAG.bit.TXC) {}
|
|
#endif
|
|
}
|
|
|
|
void uart_poweron(uart_t uart)
|
|
{
|
|
sercom_clk_en(dev(uart));
|
|
dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE;
|
|
}
|
|
|
|
void uart_poweroff(uart_t uart)
|
|
{
|
|
dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE);
|
|
sercom_clk_dis(dev(uart));
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_UART_COLLISION
|
|
bool uart_collision_detected(uart_t uart)
|
|
{
|
|
/* In case of collision, the CTRLB register
|
|
* will be in sync during disabling of TX,
|
|
* then the flag will be set.
|
|
*/
|
|
_syncbusy(dev(uart));
|
|
|
|
bool collision = dev(uart)->STATUS.bit.COLL;
|
|
dev(uart)->STATUS.reg = SERCOM_USART_STATUS_COLL;
|
|
return collision;
|
|
}
|
|
|
|
void uart_collision_detect_enable(uart_t uart)
|
|
{
|
|
/* CTRLB is enable protected */
|
|
dev(uart)->CTRLA.bit.ENABLE = 0;
|
|
_syncbusy(dev(uart));
|
|
|
|
/* clear stale collision flag */
|
|
dev(uart)->STATUS.reg = SERCOM_USART_STATUS_COLL;
|
|
|
|
/* enable collision detection */
|
|
dev(uart)->CTRLB.bit.COLDEN = 1;
|
|
|
|
/* disable RX interrupt */
|
|
dev(uart)->INTENCLR.bit.RXC = 1;
|
|
|
|
/* re-enable UART */
|
|
dev(uart)->CTRLA.bit.ENABLE = 1;
|
|
|
|
/* wait for config to be applied */
|
|
_syncbusy(dev(uart));
|
|
}
|
|
|
|
static void _drain_rxbuf(SercomUsart *dev)
|
|
{
|
|
/* clear readback bytes from receive buffer */
|
|
while (dev->INTFLAG.bit.RXC) {
|
|
dev->DATA.reg;
|
|
}
|
|
}
|
|
|
|
void uart_collision_detect_disable(uart_t uart)
|
|
{
|
|
uint32_t ctrlb = dev(uart)->CTRLB.reg;
|
|
|
|
/* re-enable TX after collision */
|
|
ctrlb |= SERCOM_USART_CTRLB_TXEN;
|
|
|
|
/* disable collision detection */
|
|
ctrlb &= ~SERCOM_USART_CTRLB_COLDEN;
|
|
|
|
/* CTRLB is enable protected */
|
|
dev(uart)->CTRLA.bit.ENABLE = 0;
|
|
_syncbusy(dev(uart));
|
|
|
|
dev(uart)->CTRLB.reg = ctrlb;
|
|
|
|
/* re-enable UART */
|
|
dev(uart)->CTRLA.bit.ENABLE = 1;
|
|
|
|
/* wait for config to be applied */
|
|
_syncbusy(dev(uart));
|
|
|
|
/* clear bytes from RX buffer */
|
|
_drain_rxbuf(dev(uart));
|
|
|
|
/* re-enable RX complete IRQ */
|
|
if (uart_ctx[uart].rx_cb) {
|
|
dev(uart)->INTENSET.bit.RXC = 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef MODULE_PERIPH_UART_MODECFG
|
|
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
|
|
uart_stop_bits_t stop_bits)
|
|
{
|
|
if (uart >= UART_NUMOF) {
|
|
return UART_NODEV;
|
|
}
|
|
|
|
if (stop_bits != UART_STOP_BITS_1 && stop_bits != UART_STOP_BITS_2) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN &&
|
|
parity != UART_PARITY_ODD) {
|
|
return UART_NOMODE;
|
|
}
|
|
|
|
/* Disable UART first to remove write protect */
|
|
dev(uart)->CTRLA.bit.ENABLE = 0;
|
|
_syncbusy(dev(uart));
|
|
|
|
dev(uart)->CTRLB.bit.CHSIZE = data_bits;
|
|
|
|
if (parity == UART_PARITY_NONE) {
|
|
dev(uart)->CTRLA.bit.FORM = 0x0;
|
|
}
|
|
else {
|
|
dev(uart)->CTRLA.bit.FORM = 0x1;
|
|
dev(uart)->CTRLB.bit.PMODE = (parity == UART_PARITY_ODD) ? 1 : 0;
|
|
}
|
|
|
|
dev(uart)->CTRLB.bit.SBMODE = (stop_bits == UART_STOP_BITS_1) ? 0 : 1;
|
|
|
|
/* Enable UART again */
|
|
dev(uart)->CTRLA.bit.ENABLE = 1;
|
|
_syncbusy(dev(uart));
|
|
|
|
return UART_OK;
|
|
}
|
|
#endif /* MODULE_PERIPH_UART_MODECFG */
|
|
|
|
#ifdef MODULE_PERIPH_UART_RXSTART_IRQ
|
|
void uart_rxstart_irq_configure(uart_t uart, uart_rxstart_cb_t cb, void *arg)
|
|
{
|
|
/* CTRLB is enable-proteced */
|
|
dev(uart)->CTRLA.bit.ENABLE = 0;
|
|
|
|
/* set start of frame detection enable */
|
|
dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE;
|
|
|
|
uart_ctx[uart].rxs_cb = cb;
|
|
uart_ctx[uart].rxs_arg = arg;
|
|
|
|
/* enable UART again */
|
|
dev(uart)->CTRLA.bit.ENABLE = 1;
|
|
}
|
|
|
|
void uart_rxstart_irq_enable(uart_t uart)
|
|
{
|
|
/* clear stale interrupt flag */
|
|
dev(uart)->INTFLAG.reg = SERCOM_USART_INTFLAG_RXS;
|
|
|
|
/* enable interrupt */
|
|
dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXS;
|
|
}
|
|
|
|
void uart_rxstart_irq_disable(uart_t uart)
|
|
{
|
|
dev(uart)->INTENCLR.reg = SERCOM_USART_INTENCLR_RXS;
|
|
}
|
|
#endif /* MODULE_PERIPH_UART_RXSTART_IRQ */
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
static inline void irq_handler_tx(unsigned uartnum)
|
|
{
|
|
/* workaround for saml1x */
|
|
int c = tsrb_get_one(&uart_tx_rb[uartnum]);
|
|
if (c >= 0) {
|
|
dev(uartnum)->DATA.reg = c;
|
|
}
|
|
|
|
/* disable the interrupt if there are no more bytes to send */
|
|
if (tsrb_empty(&uart_tx_rb[uartnum])) {
|
|
dev(uartnum)->INTENCLR.reg = SERCOM_USART_INTENSET_DRE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static inline void irq_handler(unsigned uartnum)
|
|
{
|
|
uint32_t status = dev(uartnum)->INTFLAG.reg;
|
|
/* TXC is used by uart_write() */
|
|
dev(uartnum)->INTFLAG.reg = status & ~SERCOM_USART_INTFLAG_TXC;
|
|
|
|
#if !defined(UART_HAS_TX_ISR) && defined(MODULE_PERIPH_UART_NONBLOCKING)
|
|
if ((status & SERCOM_USART_INTFLAG_DRE) && dev(uartnum)->INTENSET.bit.DRE) {
|
|
irq_handler_tx(uartnum);
|
|
}
|
|
#endif
|
|
|
|
#ifdef MODULE_PERIPH_UART_RXSTART_IRQ
|
|
if (status & SERCOM_USART_INTFLAG_RXS && dev(uartnum)->INTENSET.bit.RXS) {
|
|
uart_ctx[uartnum].rxs_cb(uart_ctx[uartnum].rxs_arg);
|
|
}
|
|
#endif
|
|
|
|
if (status & SERCOM_USART_INTFLAG_RXC) {
|
|
/* interrupt flag is cleared by reading the data register */
|
|
uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg,
|
|
(uint8_t)(dev(uartnum)->DATA.reg));
|
|
}
|
|
|
|
cortexm_isr_end();
|
|
}
|
|
|
|
#ifdef UART_0_ISR
|
|
void UART_0_ISR(void)
|
|
{
|
|
irq_handler(0);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_1_ISR
|
|
void UART_1_ISR(void)
|
|
{
|
|
irq_handler(1);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_2_ISR
|
|
void UART_2_ISR(void)
|
|
{
|
|
irq_handler(2);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_3_ISR
|
|
void UART_3_ISR(void)
|
|
{
|
|
irq_handler(3);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_4_ISR
|
|
void UART_4_ISR(void)
|
|
{
|
|
irq_handler(4);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_5_ISR
|
|
void UART_5_ISR(void)
|
|
{
|
|
irq_handler(5);
|
|
}
|
|
#endif
|
|
|
|
#ifdef MODULE_PERIPH_UART_NONBLOCKING
|
|
|
|
#ifdef UART_0_ISR_TX
|
|
void UART_0_ISR_TX(void)
|
|
{
|
|
irq_handler_tx(0);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_1_ISR_TX
|
|
void UART_1_ISR_TX(void)
|
|
{
|
|
irq_handler_tx(1);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_2_ISR_TX
|
|
void UART_2_ISR_TX(void)
|
|
{
|
|
irq_handler_tx(2);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_3_ISR_TX
|
|
void UART_3_ISR_TX(void)
|
|
{
|
|
irq_handler_tx(3);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_4_ISR_TX
|
|
void UART_4_ISR_TX(void)
|
|
{
|
|
irq_handler_tx(4);
|
|
}
|
|
#endif
|
|
|
|
#ifdef UART_5_ISR_TX
|
|
void UART_5_ISR_TX(void)
|
|
{
|
|
irq_handler_tx(5);
|
|
}
|
|
#endif
|
|
#endif /* MODULE_PERIPH_UART_NONBLOCKING */
|