1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/sam0_common/periph/rtc_rtt.c
2020-08-24 16:13:18 +02:00

512 lines
13 KiB
C

/*
* Copyright (C) 2015 Kaspar Schleiser <kaspar@schleiser.de>
* 2015 FreshTemp, LLC.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_rtc
* @ingroup drivers_periph_rtt
* @{
*
* @file rtc_rtt.c
* @brief Low-level RTC/RTT driver implementation
*
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Baptiste Clenet <bapclenet@gmail.com>
* @author FWX <FWX@dialine.fr>
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
*
* @}
*/
#include <stdint.h>
#include "periph/rtc.h"
#include "periph/rtt.h"
#include "periph_conf.h"
#define ENABLE_DEBUG 0
#include "debug.h"
/* SAML21 rev B needs an extra bit, which in rev A defaults to 1, but isn't
* visible. Thus define it here. */
#ifndef RTC_MODE0_CTRLA_COUNTSYNC
#define RTC_MODE0_CTRLA_COUNTSYNC_Pos 15
#define RTC_MODE0_CTRLA_COUNTSYNC (0x1ul << RTC_MODE0_CTRLA_COUNTSYNC_Pos)
#endif
#ifndef RTC_MODE2_CTRLA_CLOCKSYNC
#define RTC_MODE2_CTRLA_CLOCKSYNC_Pos 15
#define RTC_MODE2_CTRLA_CLOCKSYNC (0x1ul << RTC_MODE2_CTRLA_CLOCKSYNC_Pos)
#endif
#ifdef REG_RTC_MODE0_CTRLA
#define RTC_MODE0_PRESCALER \
(__builtin_ctz(2 * RTT_CLOCK_FREQUENCY / RTT_FREQUENCY) << \
RTC_MODE0_CTRLA_PRESCALER_Pos)
#else
#define RTC_MODE0_PRESCALER \
(__builtin_ctz(RTT_CLOCK_FREQUENCY / RTT_FREQUENCY) << \
RTC_MODE0_CTRL_PRESCALER_Pos)
#endif
typedef struct {
rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */
void *arg; /**< argument passed to the callback */
} rtc_state_t;
static rtc_state_t alarm_cb;
static rtc_state_t overflow_cb;
/* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet)
* struct tm younts the year since 1900, use the difference to RIOT_EPOCH
* as an offset so the user can set years in RIOT_EPOCH + 63
*/
static uint16_t reference_year = RIOT_EPOCH - 1900;
static void _wait_syncbusy(void)
{
if (IS_ACTIVE(MODULE_PERIPH_RTT)) {
#ifdef REG_RTC_MODE0_SYNCBUSY
while (RTC->MODE0.SYNCBUSY.reg) {}
#else
while (RTC->MODE0.STATUS.bit.SYNCBUSY) {}
#endif
} else {
#ifdef REG_RTC_MODE2_SYNCBUSY
while (RTC->MODE2.SYNCBUSY.reg) {}
#else
while (RTC->MODE2.STATUS.bit.SYNCBUSY) {}
#endif
}
}
static void _read_req(void)
{
#ifdef RTC_READREQ_RREQ
RTC->MODE0.READREQ.reg = RTC_READREQ_RREQ;
_wait_syncbusy();
#endif
}
static void _poweron(void)
{
#ifdef MCLK
MCLK->APBAMASK.reg |= MCLK_APBAMASK_RTC;
#else
PM->APBAMASK.reg |= PM_APBAMASK_RTC;
#endif
}
static void _poweroff(void)
{
#ifdef MCLK
MCLK->APBAMASK.reg &= ~MCLK_APBAMASK_RTC;
#else
PM->APBAMASK.reg &= ~PM_APBAMASK_RTC;
#endif
}
static inline void _rtc_set_enabled(bool on)
{
#ifdef REG_RTC_MODE2_CTRLA
RTC->MODE2.CTRLA.bit.ENABLE = on;
#else
RTC->MODE2.CTRL.bit.ENABLE = on;
#endif
_wait_syncbusy();
}
static inline void _rtt_reset(void)
{
#ifdef RTC_MODE0_CTRL_SWRST
RTC->MODE0.CTRL.reg = RTC_MODE0_CTRL_SWRST;
while (RTC->MODE0.CTRL.bit.SWRST) {}
#else
RTC->MODE0.CTRLA.reg = RTC_MODE2_CTRLA_SWRST;
while (RTC->MODE0.CTRLA.bit.SWRST) {}
#endif
}
#ifdef CPU_COMMON_SAMD21
static void _rtc_clock_setup(void)
{
/* Use 1024 Hz GCLK */
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN
| GCLK_CLKCTRL_GEN(SAM0_GCLK_1KHZ)
| GCLK_CLKCTRL_ID_RTC;
while (GCLK->STATUS.bit.SYNCBUSY) {}
}
static void _rtt_clock_setup(void)
{
/* Use 32 kHz GCLK */
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN
| GCLK_CLKCTRL_GEN(SAM0_GCLK_32KHZ)
| GCLK_CLKCTRL_ID_RTC;
while (GCLK->STATUS.bit.SYNCBUSY) {}
}
#else /* CPU_COMMON_SAMD21 - Clock Setup */
static void _rtc_clock_setup(void)
{
/* RTC source clock is external oscillator at 1kHz */
#if EXTERNAL_OSC32_SOURCE
OSC32KCTRL->XOSC32K.bit.EN1K = 1;
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K;
/* RTC uses internal 32,768KHz Oscillator */
#elif INTERNAL_OSC32_SOURCE
OSC32KCTRL->OSC32K.bit.EN1K = 1;
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC1K;
/* RTC uses Ultra Low Power internal 32,768KHz Oscillator */
#elif ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K;
#else
#error "No clock source for RTC selected. "
#endif
}
static void _rtt_clock_setup(void)
{
/* RTC source clock is external oscillator at 32kHz */
#if EXTERNAL_OSC32_SOURCE
OSC32KCTRL->XOSC32K.bit.EN32K = 1;
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC32K;
/* RTC uses internal 32,768KHz Oscillator */
#elif INTERNAL_OSC32_SOURCE
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC32K;
/* RTC uses Ultra Low Power internal 32,768KHz Oscillator */
#elif ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE
OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP32K;
#else
#error "No clock source for RTT selected. "
#endif
}
#endif /* !CPU_COMMON_SAMD21 - Clock Setup */
static void _rtc_init(void)
{
#ifdef REG_RTC_MODE2_CTRLA
if (RTC->MODE2.CTRLA.bit.MODE == RTC_MODE2_CTRLA_MODE_CLOCK_Val) {
return;
}
_rtt_reset();
/* RTC config with RTC_MODE2_CTRL_CLKREP = 0 (24h) */
RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_PRESCALER_DIV1024 /* CLK_RTC_CNT = 1KHz / 1024 -> 1Hz */
| RTC_MODE2_CTRLA_CLOCKSYNC /* Clock Read Synchronization Enable */
| RTC_MODE2_CTRLA_MODE_CLOCK;
#else
if (RTC->MODE2.CTRL.bit.MODE == RTC_MODE2_CTRL_MODE_CLOCK_Val) {
return;
}
_rtt_reset();
RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_PRESCALER_DIV1024
| RTC_MODE2_CTRL_MODE_CLOCK;
#endif
}
void rtc_init(void)
{
_poweroff();
_rtc_clock_setup();
_poweron();
_rtc_init();
/* disable all interrupt sources */
RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_MASK;
/* enable overflow interrupt */
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_OVF;
/* Clear interrupt flags */
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_OVF
| RTC_MODE2_INTFLAG_ALARM0;
_rtc_set_enabled(1);
NVIC_EnableIRQ(RTC_IRQn);
}
void rtt_init(void)
{
_rtt_clock_setup();
_poweron();
_rtt_reset();
/* set 32bit counting mode & enable the RTC */
#ifdef REG_RTC_MODE0_CTRLA
RTC->MODE0.CTRLA.reg = RTC_MODE0_CTRLA_MODE(0)
| RTC_MODE0_CTRLA_ENABLE
| RTC_MODE0_CTRLA_COUNTSYNC
| RTC_MODE0_PRESCALER;
#else
RTC->MODE0.CTRL.reg = RTC_MODE0_CTRL_MODE(0)
| RTC_MODE0_CTRL_ENABLE
| RTC_MODE0_PRESCALER;
#endif
_wait_syncbusy();
/* initially clear flag */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0
| RTC_MODE0_INTFLAG_OVF;
NVIC_EnableIRQ(RTC_IRQn);
}
void rtt_set_overflow_cb(rtt_cb_t cb, void *arg)
{
/* clear overflow cb to avoid race while assigning */
rtt_clear_overflow_cb();
/* set callback variables */
overflow_cb.cb = cb;
overflow_cb.arg = arg;
/* enable overflow interrupt */
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_OVF;
}
void rtt_clear_overflow_cb(void)
{
/* disable overflow interrupt */
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_OVF;
}
uint32_t rtt_get_counter(void)
{
_wait_syncbusy();
_read_req();
return RTC->MODE0.COUNT.reg;
}
void rtt_set_counter(uint32_t count)
{
RTC->MODE0.COUNT.reg = count;
_wait_syncbusy();
}
uint32_t rtt_get_alarm(void)
{
_wait_syncbusy();
return RTC->MODE0.COMP[0].reg;
}
int rtc_get_alarm(struct tm *time)
{
RTC_MODE2_ALARM_Type alarm;
/* Read alarm register in one time */
alarm.reg = RTC->MODE2.Mode2Alarm[0].ALARM.reg;
time->tm_year = alarm.bit.YEAR + reference_year;
if ((time->tm_year < reference_year) ||
(time->tm_year > (reference_year + 63))) {
return -1;
}
time->tm_mon = alarm.bit.MONTH - 1;
time->tm_mday = alarm.bit.DAY;
time->tm_hour = alarm.bit.HOUR;
time->tm_min = alarm.bit.MINUTE;
time->tm_sec = alarm.bit.SECOND;
return 0;
}
int rtc_get_time(struct tm *time)
{
RTC_MODE2_CLOCK_Type clock;
/* Read register in one time */
_read_req();
clock.reg = RTC->MODE2.CLOCK.reg;
time->tm_year = clock.bit.YEAR + reference_year;
if ((time->tm_year < reference_year) ||
(time->tm_year > (reference_year + 63))) {
return -1;
}
time->tm_mon = clock.bit.MONTH - 1;
time->tm_mday = clock.bit.DAY;
time->tm_hour = clock.bit.HOUR;
time->tm_min = clock.bit.MINUTE;
time->tm_sec = clock.bit.SECOND;
return 0;
}
int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg)
{
/* prevent old alarm from ringing */
rtc_clear_alarm();
/* normalize input */
rtc_tm_normalize(time);
if ((time->tm_year < reference_year) ||
(time->tm_year > (reference_year + 63))) {
return -2;
}
else {
RTC->MODE2.Mode2Alarm[0].ALARM.reg = RTC_MODE2_ALARM_YEAR(time->tm_year - reference_year)
| RTC_MODE2_ALARM_MONTH(time->tm_mon + 1)
| RTC_MODE2_ALARM_DAY(time->tm_mday)
| RTC_MODE2_ALARM_HOUR(time->tm_hour)
| RTC_MODE2_ALARM_MINUTE(time->tm_min)
| RTC_MODE2_ALARM_SECOND(time->tm_sec);
RTC->MODE2.Mode2Alarm[0].MASK.reg = RTC_MODE2_MASK_SEL(6);
}
_wait_syncbusy();
/* Enable IRQ */
alarm_cb.cb = cb;
alarm_cb.arg = arg;
/* enable alarm interrupt and clear flag */
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_ALARM0;
return 0;
}
int rtc_set_time(struct tm *time)
{
/* normalize input */
rtc_tm_normalize(time);
if ((time->tm_year < reference_year) ||
(time->tm_year > reference_year + 63)) {
return -1;
}
else {
RTC->MODE2.CLOCK.reg = RTC_MODE2_CLOCK_YEAR(time->tm_year - reference_year)
| RTC_MODE2_CLOCK_MONTH(time->tm_mon + 1)
| RTC_MODE2_CLOCK_DAY(time->tm_mday)
| RTC_MODE2_CLOCK_HOUR(time->tm_hour)
| RTC_MODE2_CLOCK_MINUTE(time->tm_min)
| RTC_MODE2_CLOCK_SECOND(time->tm_sec);
}
_wait_syncbusy();
return 0;
}
void rtt_set_alarm(uint32_t alarm, rtt_cb_t cb, void *arg)
{
/* disable interrupt to avoid race */
rtt_clear_alarm();
/* setup callback */
alarm_cb.cb = cb;
alarm_cb.arg = arg;
/* set COMP register */
RTC->MODE0.COMP[0].reg = alarm;
_wait_syncbusy();
/* enable compare interrupt and clear flag */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0;
RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_CMP0;
}
void rtc_clear_alarm(void)
{
/* disable alarm interrupt */
RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_ALARM0;
}
void rtt_clear_alarm(void)
{
/* disable compare interrupt */
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0;
}
void rtc_poweron(void)
{
_poweron();
}
void rtt_poweron(void)
{
_poweron();
}
void rtc_poweroff(void)
{
_poweroff();
}
void rtt_poweroff(void)
{
_poweroff();
}
static void _isr_rtc(void)
{
if (!IS_ACTIVE(MODULE_PERIPH_RTC)) {
return;
}
if (RTC->MODE2.INTFLAG.bit.ALARM0) {
/* clear flag */
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0;
if (alarm_cb.cb) {
alarm_cb.cb(alarm_cb.arg);
}
}
if (RTC->MODE2.INTFLAG.bit.OVF) {
/* clear flag */
RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_OVF;
/* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet)
* Start RTC again with reference_year 64 years more (Be careful with alarm set) */
reference_year += 64;
}
}
static void _isr_rtt(void)
{
if (!IS_ACTIVE(MODULE_PERIPH_RTT)) {
return;
}
if (RTC->MODE0.INTFLAG.bit.OVF) {
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_OVF;
if (overflow_cb.cb) {
overflow_cb.cb(overflow_cb.arg);
}
}
if (RTC->MODE0.INTFLAG.bit.CMP0) {
/* clear flag */
RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0;
/* disable interrupt */
RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0;
if (alarm_cb.cb) {
alarm_cb.cb(alarm_cb.arg);
}
}
}
void isr_rtc(void)
{
_isr_rtc();
_isr_rtt();
cortexm_isr_end();
}