1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/cc26xx_cc13xx/periph/uart.c
Jean Pierre Dudey d4084d6df9
cc26xx_cc13xx: fix UART1 initialization
Signed-off-by: Jean Pierre Dudey <jeandudey@hotmail.com>
2020-04-08 12:24:02 -05:00

237 lines
6.0 KiB
C

/*
* Copyright (C) 2016 Leon George
* Copyright (C) 2020 Locha Inc
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_cc26xx_cc13xx
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation
*
* @author Leon M. George <leon@georgemail.eu>
* @author Anton Gerasimov <tossel@gmail.com>
* @author Jean Pierre Dudey <jeandudey@hotmail.com>
*
* @}
*/
#include "cpu.h"
#include "periph/uart.h"
#include "periph_conf.h"
#include "cc26xx_cc13xx_power.h"
/**
* @brief Bit mask for the fractional part of the baudrate
*/
#define FRAC_BITS (6U)
#define FRAC_MASK (0x3f)
/**
* @brief Get the enable mask depending on enabled HW flow control
*/
#ifdef MODULE_PERIPH_UART_HW_FC
#define ENABLE_MASK (UART_CTSEN | UART_CTL_RTSEN | \
UART_CTL_RXE | UART_CTL_TXE | UART_CTL_UARTEN)
#else
#define ENABLE_MASK (UART_CTL_RXE | UART_CTL_TXE | UART_CTL_UARTEN)
#endif
/**
* @brief allocate memory to store callback functions
*/
static uart_isr_ctx_t ctx[UART_NUMOF];
int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
assert(uart < UART_NUMOF);
uart_regs_t *uart_reg = uart_config[uart].regs;
int tx_pin = uart_config[uart].tx_pin;
int rx_pin = uart_config[uart].rx_pin;
int intn = uart_config[uart].intn;
#ifdef MODULE_PERIPH_UART_HW_FC
int rts_pin = uart_config[uart].rts_pin;
int cts_pin = uart_config[uart].cts_pin;
#endif
if (uart == 0) {
/* UART0 requires serial domain to be enabled */
if (!power_is_domain_enabled(POWER_DOMAIN_SERIAL)) {
power_enable_domain(POWER_DOMAIN_SERIAL);
}
}
#ifdef CPU_VARIANT_X2
else if (uart == 1) {
/* UART1 requires periph domain to be enabled */
if (!power_is_domain_enabled(POWER_DOMAIN_PERIPHERALS)) {
power_enable_domain(POWER_DOMAIN_PERIPHERALS);
}
}
#endif
uart_poweron(uart);
/* disable and reset the UART */
uart_reg->CTL = 0;
/* save context */
ctx[uart].rx_cb = rx_cb;
ctx[uart].arg = arg;
/* configure pins */
if (uart == 0) {
IOC->CFG[tx_pin] = IOCFG_PORTID_UART0_TX;
IOC->CFG[rx_pin] = (IOCFG_PORTID_UART0_RX | IOCFG_INPUT_ENABLE);
#ifdef MODULE_PERIPH_UART_HW_FC
if (rts_pin != GPIO_UNDEF && cts_pin != GPIO_UNDEF) {
IOC->CFG[rts_pin] = IOCFG_PORTID_UART0_RTS;
IOC->CFG[cts_pin] = (IOCFG_PORTID_UART0_CTS | IOCFG_INPUT_ENABLE);
}
#endif
}
#ifdef CPU_VARIANT_X2
else if (uart == 1) {
IOC->CFG[tx_pin] = IOCFG_PORTID_UART1_TX;
IOC->CFG[rx_pin] = (IOCFG_PORTID_UART1_RX | IOCFG_INPUT_ENABLE);
#ifdef MODULE_PERIPH_UART_HW_FC
if (rts_pin != GPIO_UNDEF && cts_pin != GPIO_UNDEF) {
IOC->CFG[rts_pin] = IOCFG_PORTID_UART1_RTS;
IOC->CFG[cts_pin] = (IOCFG_PORTID_UART1_CTS | IOCFG_INPUT_ENABLE);
}
#endif
}
#endif
/* calculate baud-rate */
uint32_t tmp = (CLOCK_CORECLOCK * 4);
tmp += (baudrate / 2);
tmp /= baudrate;
uart_reg->IBRD = (tmp >> FRAC_BITS);
uart_reg->FBRD = (tmp & FRAC_MASK);
/* configure line to 8N1 mode, LRCH must be written after IBRD and FBRD! */
uart_reg->LCRH = UART_LCRH_WLEN_8;
/* enable the RX interrupt */
uart_reg->IMSC = UART_IMSC_RXIM;
NVIC_EnableIRQ(intn);
/* start the UART */
uart_reg->CTL = ENABLE_MASK;
return UART_OK;
}
#ifdef MODULE_PERIPH_UART_MODECFG
int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity,
uart_stop_bits_t stop_bits)
{
assert(data_bits == UART_DATA_BITS_5 ||
data_bits == UART_DATA_BITS_6 ||
data_bits == UART_DATA_BITS_7 ||
data_bits == UART_DATA_BITS_8);
assert(parity == UART_PARITY_NONE ||
parity == UART_PARITY_EVEN ||
parity == UART_PARITY_ODD ||
parity == UART_PARITY_MARK ||
parity == UART_PARITY_SPACE);
assert(stop_bits == UART_STOP_BITS_1 ||
stop_bits == UART_STOP_BITS_2);
assert(uart < UART_NUMOF);
uart_regs_t *uart_reg = uart_config[uart].regs;
/* cc26xx/cc13xx does not support mark or space parity */
if (parity == UART_PARITY_MARK || parity == UART_PARITY_SPACE) {
return UART_NOMODE;
}
/* Disable UART and clear old settings */
uart_reg->CTL = 0;
uart_reg->LCRH = 0;
/* Apply setting and enable UART */
/* cppcheck-suppress redundantAssignment
* (reason: disable-enable cycle requires writing zero first) */
uart_reg->LCRH = data_bits | parity | stop_bits;
uart_reg->CTL = ENABLE_MASK;
return UART_OK;
}
#endif
void uart_write(uart_t uart, const uint8_t *data, size_t len)
{
assert(uart < UART_NUMOF);
uart_regs_t *uart_reg = uart_config[uart].regs;
for (size_t i = 0; i < len; i++) {
while (uart_reg->FR & UART_FR_TXFF) {}
uart_reg->DR = data[i];
}
}
void uart_poweron(uart_t uart)
{
assert(uart < UART_NUMOF);
uart_regs_t *uart_reg = uart_config[uart].regs;
/* Enable clock for this UART */
power_clock_enable_uart(uart);
uart_reg->CTL = ENABLE_MASK;
}
void uart_poweroff(uart_t uart)
{
assert(uart < UART_NUMOF);
uart_regs_t *uart_reg = uart_config[uart].regs;
uart_reg->CTL = 0;
/* Disable clock for this UART */
power_clock_disable_uart(uart);
}
static void isr_uart(uart_t uart)
{
assert(uart < UART_NUMOF);
uart_regs_t *uart_reg = uart_config[uart].regs;
/* remember pending interrupts */
uint32_t mis = uart_reg->MIS;
/* clear them */
uart_reg->ICR = mis;
/* read received byte and pass it to the RX callback */
if (mis & UART_MIS_RXMIS) {
ctx[uart].rx_cb(ctx[uart].arg, (uint8_t)uart_reg->DR);
}
cortexm_isr_end();
}
void isr_uart0(void) {
isr_uart(0);
}
void isr_uart1(void) {
isr_uart(1);
}