mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
2380 lines
86 KiB
ArmAsm
2380 lines
86 KiB
ArmAsm
/*******************************************************************************
|
|
Copyright (c) 2006-2015 Cadence Design Systems Inc.
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
"Software"), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
--------------------------------------------------------------------------------
|
|
|
|
XTENSA VECTORS AND LOW LEVEL HANDLERS FOR AN RTOS
|
|
|
|
Xtensa low level exception and interrupt vectors and handlers for an RTOS.
|
|
|
|
Interrupt handlers and user exception handlers support interaction with
|
|
the RTOS by calling XT_RTOS_INT_ENTER and XT_RTOS_INT_EXIT before and
|
|
after user's specific interrupt handlers. These macros are defined in
|
|
xtensa_<rtos>.h to call suitable functions in a specific RTOS.
|
|
|
|
Users can install application-specific interrupt handlers for low and
|
|
medium level interrupts, by calling xt_set_interrupt_handler(). These
|
|
handlers can be written in C, and must obey C calling convention. The
|
|
handler table is indexed by the interrupt number. Each handler may be
|
|
provided with an argument.
|
|
|
|
Note that the system timer interrupt is handled specially, and is
|
|
dispatched to the RTOS-specific handler. This timer cannot be hooked
|
|
by application code.
|
|
|
|
Optional hooks are also provided to install a handler per level at
|
|
run-time, made available by compiling this source file with
|
|
'-DXT_INTEXC_HOOKS' (useful for automated testing).
|
|
|
|
!! This file is a template that usually needs to be modified to handle !!
|
|
!! application specific interrupts. Search USER_EDIT for helpful comments !!
|
|
!! on where to insert handlers and how to write them. !!
|
|
|
|
Users can also install application-specific exception handlers in the
|
|
same way, by calling xt_set_exception_handler(). One handler slot is
|
|
provided for each exception type. Note that some exceptions are handled
|
|
by the porting layer itself, and cannot be taken over by application
|
|
code in this manner. These are the alloca, syscall, and coprocessor
|
|
exceptions.
|
|
|
|
The exception handlers can be written in C, and must follow C calling
|
|
convention. Each handler is passed a pointer to an exception frame as
|
|
its single argument. The exception frame is created on the stack, and
|
|
holds the saved context of the thread that took the exception. If the
|
|
handler returns, the context will be restored and the instruction that
|
|
caused the exception will be retried. If the handler makes any changes
|
|
to the saved state in the exception frame, the changes will be applied
|
|
when restoring the context.
|
|
|
|
Because Xtensa is a configurable architecture, this port supports all user
|
|
generated configurations (except restrictions stated in the release notes).
|
|
This is accomplished by conditional compilation using macros and functions
|
|
defined in the Xtensa HAL (hardware adaptation layer) for your configuration.
|
|
Only the relevant parts of this file will be included in your RTOS build.
|
|
For example, this file provides interrupt vector templates for all types and
|
|
all priority levels, but only the ones in your configuration are built.
|
|
|
|
NOTES on the use of 'call0' for long jumps instead of 'j':
|
|
1. This file should be assembled with the -mlongcalls option to xt-xcc.
|
|
2. The -mlongcalls compiler option causes 'call0 dest' to be expanded to
|
|
a sequence 'l32r a0, dest' 'callx0 a0' which works regardless of the
|
|
distance from the call to the destination. The linker then relaxes
|
|
it back to 'call0 dest' if it determines that dest is within range.
|
|
This allows more flexibility in locating code without the performance
|
|
overhead of the 'l32r' literal data load in cases where the destination
|
|
is in range of 'call0'. There is an additional benefit in that 'call0'
|
|
has a longer range than 'j' due to the target being word-aligned, so
|
|
the 'l32r' sequence is less likely needed.
|
|
3. The use of 'call0' with -mlongcalls requires that register a0 not be
|
|
live at the time of the call, which is always the case for a function
|
|
call but needs to be ensured if 'call0' is used as a jump in lieu of 'j'.
|
|
4. This use of 'call0' is independent of the C function call ABI.
|
|
|
|
*******************************************************************************/
|
|
|
|
#include "xtensa_context.h"
|
|
#include "xtensa_rtos.h"
|
|
|
|
/* Enable stack backtrace across exception/interrupt - see below */
|
|
#define XT_DEBUG_BACKTRACE 1
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Defines used to access _xtos_interrupt_table.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
#define XIE_HANDLER 0
|
|
#define XIE_ARG 4
|
|
#define XIE_SIZE 8
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Macro extract_msb - return the input with only the highest bit set.
|
|
|
|
Input : "ain" - Input value, clobbered.
|
|
Output : "aout" - Output value, has only one bit set, MSB of "ain".
|
|
The two arguments must be different AR registers.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.macro extract_msb aout ain
|
|
1:
|
|
addi \aout, \ain, -1 /* aout = ain - 1 */
|
|
and \ain, \ain, \aout /* ain = ain & aout */
|
|
bnez \ain, 1b /* repeat until ain == 0 */
|
|
addi \aout, \aout, 1 /* return aout + 1 */
|
|
.endm
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Macro dispatch_c_isr - dispatch interrupts to user ISRs.
|
|
This will dispatch to user handlers (if any) that are registered in the
|
|
XTOS dispatch table (_xtos_interrupt_table). These handlers would have
|
|
been registered by calling _xtos_set_interrupt_handler(). There is one
|
|
exception - the timer interrupt used by the OS will not be dispatched
|
|
to a user handler - this must be handled by the caller of this macro.
|
|
|
|
Level triggered and software interrupts are automatically deasserted by
|
|
this code.
|
|
|
|
ASSUMPTIONS:
|
|
-- PS.INTLEVEL is set to "level" at entry
|
|
-- PS.EXCM = 0, C calling enabled
|
|
|
|
NOTE: For CALL0 ABI, a12-a15 have not yet been saved.
|
|
|
|
NOTE: This macro will use registers a0 and a2-a6. The arguments are:
|
|
level -- interrupt level
|
|
mask -- interrupt bitmask for this level
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.macro dispatch_c_isr level mask
|
|
|
|
/* Get mask of pending, enabled interrupts at this level into a2. */
|
|
|
|
.L_xt_user_int_&level&:
|
|
rsr a2, INTENABLE
|
|
rsr a3, INTERRUPT
|
|
movi a4, \mask
|
|
and a2, a2, a3
|
|
and a2, a2, a4
|
|
beqz a2, 9f /* nothing to do */
|
|
|
|
/* This bit of code provides a nice debug backtrace in the debugger.
|
|
It does take a few more instructions, so undef XT_DEBUG_BACKTRACE
|
|
if you want to save the cycles.
|
|
*/
|
|
#if XT_DEBUG_BACKTRACE
|
|
#ifndef __XTENSA_CALL0_ABI__
|
|
rsr a0, EPC_1 + \level - 1 /* return address */
|
|
movi a4, 0xC0000000 /* constant with top 2 bits set (call size) */
|
|
or a0, a0, a4 /* set top 2 bits */
|
|
addx2 a0, a4, a0 /* clear top bit -- simulating call4 size */
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/* Call interrupt hook if present to (pre)handle interrupts. */
|
|
movi a4, _xt_intexc_hooks
|
|
l32i a4, a4, \level << 2
|
|
beqz a4, 2f
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
callx0 a4
|
|
beqz a2, 9f
|
|
#else
|
|
mov a6, a2
|
|
callx4 a4
|
|
beqz a6, 9f
|
|
mov a2, a6
|
|
#endif
|
|
2:
|
|
#endif
|
|
|
|
/* Now look up in the dispatch table and call user ISR if any. */
|
|
/* If multiple bits are set then MSB has highest priority. */
|
|
|
|
extract_msb a4, a2 /* a4 = MSB of a2, a2 trashed */
|
|
|
|
#ifdef XT_USE_SWPRI
|
|
/* Enable all interrupts at this level that are numerically higher
|
|
than the one we just selected, since they are treated as higher
|
|
priority.
|
|
*/
|
|
movi a3, \mask /* a3 = all interrupts at this level */
|
|
add a2, a4, a4 /* a2 = a4 << 1 */
|
|
addi a2, a2, -1 /* a2 = mask of 1's <= a4 bit */
|
|
and a2, a2, a3 /* a2 = mask of all bits <= a4 at this level */
|
|
movi a3, _xt_intdata
|
|
l32i a6, a3, 4 /* a6 = _xt_vpri_mask */
|
|
neg a2, a2
|
|
addi a2, a2, -1 /* a2 = mask to apply */
|
|
and a5, a6, a2 /* mask off all bits <= a4 bit */
|
|
s32i a5, a3, 4 /* update _xt_vpri_mask */
|
|
rsr a3, INTENABLE
|
|
and a3, a3, a2 /* mask off all bits <= a4 bit */
|
|
wsr a3, INTENABLE
|
|
rsil a3, \level - 1 /* lower interrupt level by 1 */
|
|
#endif
|
|
|
|
movi a3, XT_TIMER_INTEN /* a3 = timer interrupt bit */
|
|
wsr a4, INTCLEAR /* clear sw or edge-triggered interrupt */
|
|
|
|
#ifndef RIOT_VERSION /* we use it as hardware timer in RIOT OS */
|
|
beq a3, a4, 7f /* if timer interrupt then skip table */
|
|
#endif
|
|
|
|
find_ms_setbit a3, a4, a3, 0 /* a3 = interrupt number */
|
|
|
|
movi a4, _xt_interrupt_table
|
|
addx8 a3, a3, a4 /* a3 = address of interrupt table entry */
|
|
l32i a4, a3, XIE_HANDLER /* a4 = handler address */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
mov a12, a6 /* save in callee-saved reg */
|
|
l32i a2, a3, XIE_ARG /* a2 = handler arg */
|
|
callx0 a4 /* call handler */
|
|
mov a2, a12
|
|
#else
|
|
mov a2, a6 /* save in windowed reg */
|
|
l32i a6, a3, XIE_ARG /* a6 = handler arg */
|
|
callx4 a4 /* call handler */
|
|
#endif
|
|
|
|
#ifdef XT_USE_SWPRI
|
|
j 8f
|
|
#else
|
|
j .L_xt_user_int_&level& /* check for more interrupts */
|
|
#endif
|
|
|
|
7:
|
|
|
|
.ifeq XT_TIMER_INTPRI - \level
|
|
.L_xt_user_int_timer_&level&:
|
|
/*
|
|
Interrupt handler for the RTOS tick timer if at this level.
|
|
We'll be reading the interrupt state again after this call
|
|
so no need to preserve any registers except a6 (vpri_mask).
|
|
*/
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
mov a12, a6
|
|
call0 XT_RTOS_TIMER_INT
|
|
mov a2, a12
|
|
#else
|
|
mov a2, a6
|
|
call4 XT_RTOS_TIMER_INT
|
|
#endif
|
|
.endif
|
|
|
|
#ifdef XT_USE_SWPRI
|
|
j 8f
|
|
#else
|
|
j .L_xt_user_int_&level& /* check for more interrupts */
|
|
#endif
|
|
|
|
#ifdef XT_USE_SWPRI
|
|
8:
|
|
/* Restore old value of _xt_vpri_mask from a2. Also update INTENABLE from
|
|
virtual _xt_intenable which _could_ have changed during interrupt
|
|
processing. */
|
|
|
|
movi a3, _xt_intdata
|
|
l32i a4, a3, 0 /* a4 = _xt_intenable */
|
|
s32i a2, a3, 4 /* update _xt_vpri_mask */
|
|
and a4, a4, a2 /* a4 = masked intenable */
|
|
wsr a4, INTENABLE /* update INTENABLE */
|
|
#endif
|
|
|
|
9:
|
|
/* done */
|
|
|
|
.endm
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Panic handler.
|
|
Should be reached by call0 (preferable) or jump only. If call0, a0 says where
|
|
from. If on simulator, display panic message and abort, else loop indefinitely.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.text
|
|
.literal_position
|
|
.global _xt_panic
|
|
.type _xt_panic,@function
|
|
.align 4
|
|
|
|
_xt_panic:
|
|
#ifdef XT_SIMULATOR
|
|
addi a4, a0, -3 /* point to call0 */
|
|
movi a3, _xt_panic_message
|
|
movi a2, SYS_log_msg
|
|
simcall
|
|
movi a2, SYS_gdb_abort
|
|
simcall
|
|
#else
|
|
#ifdef RIOT_VERSION
|
|
addi a2, a0, -3
|
|
call0 _panic_handler
|
|
#endif
|
|
rsil a2, XCHAL_EXCM_LEVEL /* disable all low & med ints */
|
|
1: j 1b /* loop infinitely */
|
|
#endif
|
|
|
|
.section .rodata, "a"
|
|
.align 4
|
|
|
|
_xt_panic_message:
|
|
.string "\n*** _xt_panic() was called from 0x%08x or jumped to. ***\n"
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Hooks to dynamically install handlers for exceptions and interrupts.
|
|
Allows automated regression frameworks to install handlers per test.
|
|
Consists of an array of function pointers indexed by interrupt level,
|
|
with index 0 containing the entry for user exceptions.
|
|
Initialized with all 0s, meaning no handler is installed at each level.
|
|
See comment in xtensa_rtos.h for more details.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
.data
|
|
.global _xt_intexc_hooks
|
|
.type _xt_intexc_hooks,@object
|
|
.align 4
|
|
|
|
_xt_intexc_hooks:
|
|
.fill XT_INTEXC_HOOK_NUM, 4, 0
|
|
#endif
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
EXCEPTION AND LEVEL 1 INTERRUPT VECTORS AND LOW LEVEL HANDLERS
|
|
(except window exception vectors).
|
|
|
|
Each vector goes at a predetermined location according to the Xtensa
|
|
hardware configuration, which is ensured by its placement in a special
|
|
section known to the Xtensa linker support package (LSP). It performs
|
|
the minimum necessary before jumping to the handler in the .text section.
|
|
|
|
The corresponding handler goes in the normal .text section. It sets up
|
|
the appropriate stack frame, saves a few vector-specific registers and
|
|
calls XT_RTOS_INT_ENTER to save the rest of the interrupted context
|
|
and enter the RTOS, then sets up a C environment. It then calls the
|
|
user's interrupt handler code (which may be coded in C) and finally
|
|
calls XT_RTOS_INT_EXIT to transfer control to the RTOS for scheduling.
|
|
|
|
While XT_RTOS_INT_EXIT does not return directly to the interruptee,
|
|
eventually the RTOS scheduler will want to dispatch the interrupted
|
|
task or handler. The scheduler will return to the exit point that was
|
|
saved in the interrupt stack frame at XT_STK_EXIT.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Debug Exception.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
#if XCHAL_HAVE_DEBUG
|
|
|
|
.begin literal_prefix .DebugExceptionVector
|
|
.section .DebugExceptionVector.text, "ax"
|
|
.global _DebugExceptionVector
|
|
.literal_position
|
|
.align 4
|
|
|
|
_DebugExceptionVector:
|
|
/*
|
|
* Please note that this code will be overwritten with
|
|
*
|
|
* xsr a2, excsave2
|
|
* jx a2
|
|
*
|
|
* if module esp_gdbstub is used.
|
|
*/
|
|
|
|
#ifdef XT_SIMULATOR
|
|
/*
|
|
In the simulator, let the debugger (if any) handle the debug exception,
|
|
or simply stop the simulation:
|
|
*/
|
|
wsr a2, EXCSAVE+XCHAL_DEBUGLEVEL /* save a2 where sim expects it */
|
|
movi a2, SYS_gdb_enter_sktloop
|
|
simcall /* have ISS handle debug exc. */
|
|
#elif 0 /* change condition to 1 to use the HAL minimal debug handler */
|
|
wsr a3, EXCSAVE+XCHAL_DEBUGLEVEL
|
|
movi a3, xthal_debugexc_defhndlr_nw /* use default debug handler */
|
|
jx a3
|
|
#else /* XT_SIMULATOR */
|
|
wsr a0, EXCSAVE+XCHAL_DEBUGLEVEL /* save original a0 somewhere */
|
|
call0 _xt_panic /* does not return */
|
|
rfi XCHAL_DEBUGLEVEL /* make a0 point here not later */
|
|
#endif /* XT_SIMULATOR */
|
|
|
|
.end literal_prefix
|
|
|
|
#endif /* XCHAL_HAVE_DEBUG */
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Double Exception.
|
|
Double exceptions are not a normal occurrence. They indicate a bug of some kind.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifdef XCHAL_DOUBLEEXC_VECTOR_VADDR
|
|
|
|
.begin literal_prefix .DoubleExceptionVector
|
|
.section .DoubleExceptionVector.text, "ax"
|
|
.global _DoubleExceptionVector
|
|
.literal_position
|
|
.align 4
|
|
|
|
_DoubleExceptionVector:
|
|
|
|
#if XCHAL_HAVE_DEBUG
|
|
break 1, 4 /* unhandled double exception */
|
|
#endif
|
|
call0 _xt_panic /* does not return */
|
|
rfde /* make a0 point here not later */
|
|
|
|
.end literal_prefix
|
|
|
|
#endif /* XCHAL_DOUBLEEXC_VECTOR_VADDR */
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Kernel Exception (including Level 1 Interrupt from kernel mode).
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.begin literal_prefix .KernelExceptionVector
|
|
.section .KernelExceptionVector.text, "ax"
|
|
.global _KernelExceptionVector
|
|
.literal_position
|
|
.align 4
|
|
|
|
_KernelExceptionVector:
|
|
|
|
wsr a0, EXCSAVE_1 /* preserve a0 */
|
|
call0 _xt_kernel_exc /* kernel exception handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.literal_position
|
|
.align 4
|
|
|
|
_xt_kernel_exc:
|
|
#if XCHAL_HAVE_DEBUG
|
|
break 1, 0 /* unhandled kernel exception */
|
|
#endif
|
|
call0 _xt_panic /* does not return */
|
|
rfe /* make a0 point here not there */
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
User Exception (including Level 1 Interrupt from user mode).
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.begin literal_prefix .UserExceptionVector
|
|
.section .UserExceptionVector.text, "ax"
|
|
.global _UserExceptionVector
|
|
.type _UserExceptionVector,@function
|
|
.literal_position
|
|
.align 4
|
|
|
|
_UserExceptionVector:
|
|
|
|
#ifdef MCU_ESP8266
|
|
wsr a0, EXCSAVE_1 /* preserve a0 */
|
|
j _UserExceptionTrampoline /* jump to handler trampoline */
|
|
#else
|
|
wsr a0, EXCSAVE_1 /* preserve a0 */
|
|
call0 _xt_user_exc /* user exception handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
#endif
|
|
|
|
.end literal_prefix
|
|
|
|
#ifdef MCU_ESP8266
|
|
/*************************** LoadStoreError Handler BEGIN ********************/
|
|
/*
|
|
* PLEASE NOTE: The code between "LoadStoreError Handler BEGIN" and
|
|
* "LoadStoreError Handler END" markers was extracted from esp-open-rtos. It is
|
|
* under the following copyright:
|
|
*
|
|
* Part of esp-open-rtos
|
|
* Original vector contents Copyright (C) 2014-2015 Espressif Systems
|
|
* Additions Copyright (C) Superhouse Automation Pty Ltd and Angus Gratton
|
|
* BSD Licensed as described in the file LICENSE
|
|
*
|
|
* Usually, the access to the IROM (flash) memory requires 32-bit word aligned
|
|
* reads. Attempts to access data in the IROM (flash) memory less than 32 bits
|
|
* in size triggers a LoadStoreError exception. Therefore, it is not possible to
|
|
* place .rodata sections in IROM (flash). Rather, .rodata sections have to
|
|
* be placed in RAM. With the exception handler from esp-open-rtos it becomes
|
|
* possible to access data in IROM (flash) with a size of less than 32 bits
|
|
* and thus to place .rodata sections in the IROM (flash).
|
|
*/
|
|
|
|
#define CAUSE_LOADSTORE 3
|
|
#define fatal_exception_handler _xt_user_exc
|
|
|
|
/* LoadStoreError handler stack */
|
|
|
|
.section .bss
|
|
.balign 16
|
|
|
|
_LoadStoreErrorHandlerStack:
|
|
.word 0 # a0
|
|
.word 0 # (unused)
|
|
.word 0 # a2
|
|
.word 0 # a3
|
|
.word 0 # a4
|
|
|
|
/* LoadStoreError Trampoline */
|
|
|
|
.section .UserExceptionTrampoline.text, "x"
|
|
.literal_position
|
|
.balign 4
|
|
|
|
_UserExceptionTrampoline:
|
|
|
|
wsr a1, EXCSAVE_2 /* preserve a1 */
|
|
#ifdef MCU_ESP8266
|
|
rsr a1, exccause
|
|
beqi a1, CAUSE_LOADSTORE, _LoadStoreErrorHandler
|
|
#endif
|
|
rsr a1, EXCSAVE_2 /* restore a1 */
|
|
call0 _xt_user_exc /* user exception handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
/*
|
|
* Xtensa "Load/Store Exception" handler:
|
|
* Completes L8/L16 load instructions from Instruction address space,
|
|
* for which the architecture only supports 32-bit reads.
|
|
*
|
|
* Called from UserExceptionVector if EXCCAUSE is LoadStoreErrorCause
|
|
*
|
|
* (Fast path (no branches) is for L8UI)
|
|
*/
|
|
.literal_position
|
|
.balign 4
|
|
.type LoadStoreErrorHandler, @function
|
|
|
|
_LoadStoreErrorHandler:
|
|
|
|
rsr a1, EXCSAVE_2 /* restore a1 */
|
|
wsr a1, EXCSAVE_1 /* save it to excsave1 */
|
|
/* Registers are saved in the address corresponding to their register
|
|
* number times 4. This allows a quick and easy mapping later on when
|
|
* needing to store the value to a particular register number. */
|
|
movi sp, _LoadStoreErrorHandlerStack
|
|
s32i a0, sp, 0
|
|
s32i a2, sp, 0x08
|
|
s32i a3, sp, 0x0c
|
|
s32i a4, sp, 0x10
|
|
rsr a0, sar # Save SAR in a0 to restore later
|
|
|
|
/* Examine the opcode which generated the exception */
|
|
/* Note: Instructions are in this order to avoid pipeline stalls. */
|
|
rsr a2, epc1
|
|
movi a3, ~3
|
|
ssa8l a2 # sar is now correct shift for aligned read
|
|
and a2, a2, a3 # a2 now 4-byte aligned address of instruction
|
|
l32i a4, a2, 0
|
|
l32i a2, a2, 4
|
|
movi a3, 0x00700F # opcode mask for l8ui/l16si/l16ui
|
|
src a2, a2, a4 # a2 now instruction that failed
|
|
and a3, a2, a3 # a3 is masked instruction
|
|
bnei a3, 0x000002, .LSE_check_l16
|
|
|
|
/* Note: At this point, opcode could technically be one of two things:
|
|
* xx0xx2 (L8UI)
|
|
* xx8xx2 (Reserved (invalid) opcode)
|
|
* It is assumed that we'll never get to this point from an illegal
|
|
* opcode, so we don't bother to check for that case and presume this
|
|
* is always an L8UI. */
|
|
|
|
movi a4, ~3
|
|
rsr a3, excvaddr # read faulting address
|
|
and a4, a3, a4 # a4 now word aligned read address
|
|
|
|
l32i a4, a4, 0 # perform the actual read
|
|
ssa8l a3 # sar is now shift to extract a3's byte
|
|
srl a3, a4 # shift right correct distance
|
|
extui a4, a3, 0, 8 # mask off bits we need for an l8
|
|
|
|
.LSE_post_fetch:
|
|
/* We jump back here after either the L8UI or the L16*I routines do the
|
|
* necessary work to read the value from memory.
|
|
* At this point, a2 holds the faulting instruction and a4 holds the
|
|
* correctly read value.
|
|
|
|
* Restore original SAR value (saved in a0) and update EPC so we'll
|
|
* return back to the instruction following the one we just emulated */
|
|
|
|
/* Note: Instructions are in this order to avoid pipeline stalls */
|
|
rsr a3, epc1
|
|
wsr a0, sar
|
|
addi a3, a3, 0x3
|
|
wsr a3, epc1
|
|
|
|
/* Stupid opcode tricks: The jumptable we use later on needs 16 bytes
|
|
* per entry (so we can avoid a second jump by just doing a RFE inside
|
|
* each entry). Unfortunately, however, Xtensa doesn't have an addx16
|
|
* operation to make that easy for us. Luckily, all of the faulting
|
|
* opcodes we're processing are guaranteed to have bit 3 be zero, which
|
|
* means if we just shift the register bits of the opcode down by 3
|
|
* instead of 4, we will get the register number multiplied by 2. This
|
|
* combined with an addx8 will give us an effective addx16 without
|
|
* needing any extra shift operations. */
|
|
extui a2, a2, 3, 5 # a2 is now destination register 0-15 times 2
|
|
|
|
bgei a2, 10, .LSE_assign_reg # a5..a15 use jumptable
|
|
beqi a2, 2, .LSE_assign_a1 # a1 uses a special routine
|
|
|
|
/* We're storing into a0 or a2..a4, which are all saved in our "stack"
|
|
* area. Calculate the correct address and stick the value in there,
|
|
* then just do our normal restore and RFE (no jumps required, which
|
|
* actually makes a0..a4 substantially faster). */
|
|
addx2 a2, a2, sp
|
|
s32i a4, a2, 0
|
|
|
|
/* Restore all regs and return */
|
|
l32i a0, sp, 0
|
|
l32i a2, sp, 0x08
|
|
l32i a3, sp, 0x0c
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1 # restore a1 saved by UserExceptionVector
|
|
rfe
|
|
|
|
.LSE_assign_reg:
|
|
/* At this point, a2 contains the register number times 2, a4 is the
|
|
* read value. */
|
|
|
|
/* Calculate the jumptable address, and restore all regs except a2 and
|
|
* a4 so we have less to do after jumping. */
|
|
/* Note: Instructions are in this order to avoid pipeline stalls. */
|
|
movi a3, .LSE_jumptable_base
|
|
l32i a0, sp, 0
|
|
addx8 a2, a2, a3 # a2 is now the address to jump to
|
|
l32i a3, sp, 0x0c
|
|
|
|
jx a2
|
|
|
|
.balign 4
|
|
.LSE_check_l16:
|
|
/* At this point, a2 contains the opcode, a3 is masked opcode */
|
|
movi a4, 0x001002 # l16si or l16ui opcode after masking
|
|
bne a3, a4, .LSE_wrong_opcode
|
|
|
|
/* Note: At this point, the opcode could be one of two things:
|
|
* xx1xx2 (L16UI)
|
|
* xx9xx2 (L16SI)
|
|
* Both of these we can handle. */
|
|
|
|
movi a4, ~3
|
|
rsr a3, excvaddr # read faulting address
|
|
and a4, a3, a4 # a4 now word aligned read address
|
|
|
|
l32i a4, a4, 0 # perform the actual read
|
|
ssa8l a3 # sar is now shift to extract a3's bytes
|
|
srl a3, a4 # shift right correct distance
|
|
extui a4, a3, 0, 16 # mask off bits we need for an l16
|
|
|
|
bbci a2, 15, .LSE_post_fetch # Not a signed op
|
|
bbci a4, 15, .LSE_post_fetch # Value does not need sign-extension
|
|
|
|
movi a3, 0xFFFF0000
|
|
or a4, a3, a4 # set 32-bit sign bits
|
|
j .LSE_post_fetch
|
|
|
|
.LSE_wrong_opcode:
|
|
/* If we got here it's not an opcode we can try to fix, so bomb out.
|
|
* Restore registers so any dump the fatal exception routine produces
|
|
* will have correct values */
|
|
wsr a0, sar
|
|
l32i a0, sp, 0
|
|
/*l32i a2, sp, 0x08*/
|
|
l32i a3, sp, 0x0c
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
mov a2, a1
|
|
movi a3, 0
|
|
call0 fatal_exception_handler
|
|
|
|
.balign 4
|
|
.LSE_assign_a1:
|
|
/* a1 is saved in excsave1, so just update that with the value, */
|
|
wsr a4, excsave1
|
|
/* Then restore all regs and return */
|
|
l32i a0, sp, 0
|
|
l32i a2, sp, 0x08
|
|
l32i a3, sp, 0x0c
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.balign 4
|
|
.LSE_jumptable:
|
|
/* The first 5 entries (80 bytes) of this table are unused (registers
|
|
* a0..a4 are handled separately above). Rather than have a whole bunch
|
|
* of wasted space, we just pretend that the table starts 80 bytes
|
|
* earlier in memory. */
|
|
.set .LSE_jumptable_base, .LSE_jumptable - (16 * 5)
|
|
|
|
.org .LSE_jumptable_base + (16 * 5)
|
|
mov a5, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 6)
|
|
mov a6, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 7)
|
|
mov a7, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 8)
|
|
mov a8, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 9)
|
|
mov a9, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 10)
|
|
mov a10, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 11)
|
|
mov a11, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 12)
|
|
mov a12, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 13)
|
|
mov a13, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 14)
|
|
mov a14, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
.org .LSE_jumptable_base + (16 * 15)
|
|
mov a15, a4
|
|
l32i a2, sp, 0x08
|
|
l32i a4, sp, 0x10
|
|
rsr a1, excsave1
|
|
rfe
|
|
|
|
/*************************** LoadStoreError Handler END **********************/
|
|
#endif
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Insert some waypoints for jumping beyond the signed 8-bit range of
|
|
conditional branch instructions, so the conditional branchces to specific
|
|
exception handlers are not taken in the mainline. Saves some cycles in the
|
|
mainline.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.text
|
|
|
|
#if XCHAL_HAVE_WINDOWED
|
|
.align 4
|
|
_xt_to_alloca_exc:
|
|
call0 _xt_alloca_exc /* in window vectors section */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
#endif
|
|
|
|
.align 4
|
|
_xt_to_syscall_exc:
|
|
call0 _xt_syscall_exc
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
#if XCHAL_CP_NUM > 0
|
|
.align 4
|
|
_xt_to_coproc_exc:
|
|
call0 _xt_coproc_exc
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
#endif
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
User exception handler.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.type _xt_user_exc,@function
|
|
.align 4
|
|
|
|
_xt_user_exc:
|
|
|
|
/* If level 1 interrupt then jump to the dispatcher */
|
|
rsr a0, EXCCAUSE
|
|
beqi a0, EXCCAUSE_LEVEL1INTERRUPT, _xt_lowint1
|
|
|
|
/* Handle any coprocessor exceptions. Rely on the fact that exception
|
|
numbers above EXCCAUSE_CP0_DISABLED all relate to the coprocessors.
|
|
*/
|
|
#if XCHAL_CP_NUM > 0
|
|
bgeui a0, EXCCAUSE_CP0_DISABLED, _xt_to_coproc_exc
|
|
#endif
|
|
|
|
/* Handle alloca and syscall exceptions */
|
|
#if XCHAL_HAVE_WINDOWED
|
|
beqi a0, EXCCAUSE_ALLOCA, _xt_to_alloca_exc
|
|
#endif
|
|
beqi a0, EXCCAUSE_SYSCALL, _xt_to_syscall_exc
|
|
|
|
/* Handle all other exceptions. All can have user-defined handlers. */
|
|
/* NOTE: we'll stay on the user stack for exception handling. */
|
|
|
|
/* Allocate exception frame and save minimal context. */
|
|
mov a0, sp
|
|
addi sp, sp, -XT_STK_FRMSZ
|
|
s32i a0, sp, XT_STK_A1
|
|
#if XCHAL_HAVE_WINDOWED
|
|
s32e a0, sp, -12 /* for debug backtrace */
|
|
#endif
|
|
rsr a0, PS /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_1 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_1 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
#if XCHAL_HAVE_WINDOWED
|
|
s32e a0, sp, -16 /* for debug backtrace */
|
|
#endif
|
|
s32i a12, sp, XT_STK_A12 /* _xt_context_save requires A12- */
|
|
s32i a13, sp, XT_STK_A13 /* A13 to have already been saved */
|
|
call0 _xt_context_save
|
|
|
|
/* Save exc cause and vaddr into exception frame */
|
|
rsr a0, EXCCAUSE
|
|
s32i a0, sp, XT_STK_EXCCAUSE
|
|
rsr a0, EXCVADDR
|
|
s32i a0, sp, XT_STK_EXCVADDR
|
|
|
|
/* Set up PS for C, reenable hi-pri interrupts, and clear EXCM. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
movi a0, PS_INTLEVEL(XCHAL_EXCM_LEVEL) | PS_UM
|
|
#else
|
|
movi a0, PS_INTLEVEL(XCHAL_EXCM_LEVEL) | PS_UM | PS_WOE
|
|
#endif
|
|
wsr a0, PS
|
|
|
|
#ifdef XT_DEBUG_BACKTRACE
|
|
#ifndef __XTENSA_CALL0_ABI__
|
|
rsr a0, EPC_1 /* return address for debug backtrace */
|
|
movi a5, 0xC0000000 /* constant with top 2 bits set (call size) */
|
|
rsync /* wait for WSR.PS to complete */
|
|
or a0, a0, a5 /* set top 2 bits */
|
|
addx2 a0, a5, a0 /* clear top bit -- thus simulating call4 size */
|
|
#else
|
|
rsync /* wait for WSR.PS to complete */
|
|
#endif
|
|
#endif
|
|
|
|
rsr a2, EXCCAUSE /* recover exc cause */
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/*
|
|
Call exception hook to pre-handle exceptions (if installed).
|
|
Pass EXCCAUSE in a2, and check result in a2 (if -1, skip default handling).
|
|
*/
|
|
movi a4, _xt_intexc_hooks
|
|
l32i a4, a4, 0 /* user exception hook index 0 */
|
|
beqz a4, 1f
|
|
.Ln_xt_user_exc_call_hook:
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
callx0 a4
|
|
beqi a2, -1, .L_xt_user_done
|
|
#else
|
|
mov a6, a2
|
|
callx4 a4
|
|
beqi a6, -1, .L_xt_user_done
|
|
mov a2, a6
|
|
#endif
|
|
1:
|
|
#endif
|
|
|
|
rsr a2, EXCCAUSE /* recover exc cause */
|
|
movi a3, _xt_exception_table
|
|
addx4 a4, a2, a3 /* a4 = address of exception table entry */
|
|
l32i a4, a4, 0 /* a4 = handler address */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
mov a2, sp /* a2 = pointer to exc frame */
|
|
callx0 a4 /* call handler */
|
|
#else
|
|
mov a6, sp /* a6 = pointer to exc frame */
|
|
callx4 a4 /* call handler */
|
|
#endif
|
|
|
|
.L_xt_user_done:
|
|
|
|
/* Restore context and return */
|
|
call0 _xt_context_restore
|
|
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
|
wsr a0, PS
|
|
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
|
wsr a0, EPC_1
|
|
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
|
l32i sp, sp, XT_STK_A1 /* remove exception frame */
|
|
rsync /* ensure PS and EPC written */
|
|
rfe /* PS.EXCM is cleared */
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT
|
|
on entry and used to return to a thread or interrupted interrupt handler.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.global _xt_user_exit
|
|
.type _xt_user_exit,@function
|
|
.align 4
|
|
_xt_user_exit:
|
|
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
|
wsr a0, PS
|
|
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
|
wsr a0, EPC_1
|
|
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
|
l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */
|
|
rsync /* ensure PS and EPC written */
|
|
rfe /* PS.EXCM is cleared */
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Syscall Exception Handler (jumped to from User Exception Handler).
|
|
Syscall 0 is required to spill the register windows (no-op in Call 0 ABI).
|
|
Only syscall 0 is handled here. Other syscalls return -1 to caller in a2.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.text
|
|
.type _xt_syscall_exc,@function
|
|
.align 4
|
|
_xt_syscall_exc:
|
|
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
/*
|
|
Save minimal regs for scratch. Syscall 0 does nothing in Call0 ABI.
|
|
Use a minimal stack frame (16B) to save A2 & A3 for scratch.
|
|
PS.EXCM could be cleared here, but unlikely to improve worst-case latency.
|
|
rsr a0, PS
|
|
addi a0, a0, -PS_EXCM_MASK
|
|
wsr a0, PS
|
|
*/
|
|
addi sp, sp, -16
|
|
s32i a2, sp, 8
|
|
s32i a3, sp, 12
|
|
#else /* Windowed ABI */
|
|
/*
|
|
Save necessary context and spill the register windows.
|
|
PS.EXCM is still set and must remain set until after the spill.
|
|
Reuse context save function though it saves more than necessary.
|
|
For this reason, a full interrupt stack frame is allocated.
|
|
*/
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a12, sp, XT_STK_A12 /* _xt_context_save requires A12- */
|
|
s32i a13, sp, XT_STK_A13 /* A13 to have already been saved */
|
|
call0 _xt_context_save
|
|
#endif
|
|
|
|
/*
|
|
Grab the interruptee's PC and skip over the 'syscall' instruction.
|
|
If it's at the end of a zero-overhead loop and it's not on the last
|
|
iteration, decrement loop counter and skip to beginning of loop.
|
|
*/
|
|
rsr a2, EPC_1 /* a2 = PC of 'syscall' */
|
|
addi a3, a2, 3 /* ++PC */
|
|
#if XCHAL_HAVE_LOOPS
|
|
rsr a0, LEND /* if (PC == LEND */
|
|
bne a3, a0, 1f
|
|
rsr a0, LCOUNT /* && LCOUNT != 0) */
|
|
beqz a0, 1f /* { */
|
|
addi a0, a0, -1 /* --LCOUNT */
|
|
rsr a3, LBEG /* PC = LBEG */
|
|
wsr a0, LCOUNT /* } */
|
|
#endif
|
|
1: wsr a3, EPC_1 /* update PC */
|
|
|
|
/* Restore interruptee's context and return from exception. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
l32i a2, sp, 8
|
|
l32i a3, sp, 12
|
|
addi sp, sp, 16
|
|
#else
|
|
call0 _xt_context_restore
|
|
addi sp, sp, XT_STK_FRMSZ
|
|
#endif
|
|
movi a0, -1
|
|
movnez a2, a0, a2 /* return -1 if not syscall 0 */
|
|
rsr a0, EXCSAVE_1
|
|
rfe
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Co-Processor Exception Handler (jumped to from User Exception Handler).
|
|
These exceptions are generated by co-processor instructions, which are only
|
|
allowed in thread code (not in interrupts or kernel code). This restriction is
|
|
deliberately imposed to reduce the burden of state-save/restore in interrupts.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
#if XCHAL_CP_NUM > 0
|
|
|
|
.section .rodata, "a"
|
|
|
|
/* Offset to CP n save area in thread's CP save area. */
|
|
.global _xt_coproc_sa_offset
|
|
.type _xt_coproc_sa_offset,@object
|
|
.align 16 /* minimize crossing cache boundaries */
|
|
_xt_coproc_sa_offset:
|
|
.word XT_CP0_SA, XT_CP1_SA, XT_CP2_SA, XT_CP3_SA
|
|
.word XT_CP4_SA, XT_CP5_SA, XT_CP6_SA, XT_CP7_SA
|
|
|
|
/* Bitmask for CP n's CPENABLE bit. */
|
|
.type _xt_coproc_mask,@object
|
|
.align 16,,8 /* try to keep it all in one cache line */
|
|
.set i, 0
|
|
_xt_coproc_mask:
|
|
.rept XCHAL_CP_MAX
|
|
.long (i<<16) | (1<<i) // upper 16-bits = i, lower = bitmask
|
|
.set i, i+1
|
|
.endr
|
|
|
|
.data
|
|
|
|
/* Owner thread of CP n, identified by thread's CP save area (0 = unowned). */
|
|
.global _xt_coproc_owner_sa
|
|
.type _xt_coproc_owner_sa,@object
|
|
.align 16,,XCHAL_CP_MAX<<2 /* minimize crossing cache boundaries */
|
|
_xt_coproc_owner_sa:
|
|
.space XCHAL_CP_MAX << 2
|
|
|
|
.text
|
|
|
|
|
|
.align 4
|
|
.L_goto_invalid:
|
|
j .L_xt_coproc_invalid /* not in a thread (invalid) */
|
|
.align 4
|
|
.L_goto_done:
|
|
j .L_xt_coproc_done
|
|
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Coprocessor exception handler.
|
|
At entry, only a0 has been saved (in EXCSAVE_1).
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.type _xt_coproc_exc,@function
|
|
.align 4
|
|
|
|
_xt_coproc_exc:
|
|
|
|
/* Allocate interrupt stack frame and save minimal context. */
|
|
mov a0, sp /* sp == a1 */
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */
|
|
#if XCHAL_HAVE_WINDOWED
|
|
s32e a0, sp, -12 /* for debug backtrace */
|
|
#endif
|
|
rsr a0, PS /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_1 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_1 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
#if XCHAL_HAVE_WINDOWED
|
|
s32e a0, sp, -16 /* for debug backtrace */
|
|
#endif
|
|
movi a0, _xt_user_exit /* save exit point for dispatch */
|
|
s32i a0, sp, XT_STK_EXIT
|
|
|
|
rsr a0, EXCCAUSE
|
|
s32i a5, sp, XT_STK_A5 /* save a5 */
|
|
addi a5, a0, -EXCCAUSE_CP0_DISABLED /* a5 = CP index */
|
|
|
|
/* Save a few more of interruptee's registers (a5 was already saved). */
|
|
s32i a2, sp, XT_STK_A2
|
|
s32i a3, sp, XT_STK_A3
|
|
s32i a4, sp, XT_STK_A4
|
|
s32i a15, sp, XT_STK_A15
|
|
|
|
/* Get co-processor state save area of new owner thread. */
|
|
call0 XT_RTOS_CP_STATE /* a15 = new owner's save area */
|
|
beqz a15, .L_goto_invalid /* not in a thread (invalid) */
|
|
|
|
/* Enable the co-processor's bit in CPENABLE. */
|
|
movi a0, _xt_coproc_mask
|
|
rsr a4, CPENABLE /* a4 = CPENABLE */
|
|
addx4 a0, a5, a0 /* a0 = &_xt_coproc_mask[n] */
|
|
l32i a0, a0, 0 /* a0 = (n << 16) | (1 << n) */
|
|
movi a3, _xt_coproc_owner_sa /* (placed here for load slot) */
|
|
extui a2, a0, 0, 16 /* coprocessor bitmask portion */
|
|
or a4, a4, a2 /* a4 = CPENABLE | (1 << n) */
|
|
wsr a4, CPENABLE
|
|
|
|
/* Get old coprocessor owner thread (save area ptr) and assign new one. */
|
|
addx4 a3, a5, a3 /* a3 = &_xt_coproc_owner_sa[n] */
|
|
l32i a2, a3, 0 /* a2 = old owner's save area */
|
|
s32i a15, a3, 0 /* _xt_coproc_owner_sa[n] = new */
|
|
rsync /* ensure wsr.CPENABLE is complete */
|
|
|
|
/* Only need to context switch if new owner != old owner. */
|
|
beq a15, a2, .L_goto_done /* new owner == old, we're done */
|
|
|
|
/* If no old owner then nothing to save. */
|
|
beqz a2, .L_check_new
|
|
|
|
/* If old owner not actively using CP then nothing to save. */
|
|
l16ui a4, a2, XT_CPENABLE /* a4 = old owner's CPENABLE */
|
|
bnone a4, a0, .L_check_new /* old owner not using CP */
|
|
|
|
.L_save_old:
|
|
/* Save old owner's coprocessor state. */
|
|
|
|
movi a5, _xt_coproc_sa_offset
|
|
|
|
/* Mark old owner state as no longer active (CPENABLE bit n clear). */
|
|
xor a4, a4, a0 /* clear CP bit in CPENABLE */
|
|
s16i a4, a2, XT_CPENABLE /* update old owner's CPENABLE */
|
|
|
|
extui a4, a0, 16, 5 /* a4 = CP index = n */
|
|
addx4 a5, a4, a5 /* a5 = &_xt_coproc_sa_offset[n] */
|
|
|
|
/* Mark old owner state as saved (CPSTORED bit n set). */
|
|
l16ui a4, a2, XT_CPSTORED /* a4 = old owner's CPSTORED */
|
|
l32i a5, a5, 0 /* a5 = XT_CP[n]_SA offset */
|
|
or a4, a4, a0 /* set CP in old owner's CPSTORED */
|
|
s16i a4, a2, XT_CPSTORED /* update old owner's CPSTORED */
|
|
l32i a2, a2, XT_CP_ASA /* ptr to actual (aligned) save area */
|
|
extui a3, a0, 16, 5 /* a3 = CP index = n */
|
|
add a2, a2, a5 /* a2 = old owner's area for CP n */
|
|
|
|
/*
|
|
The config-specific HAL macro invoked below destroys a2-5, preserves a0-1.
|
|
It is theoretically possible for Xtensa processor designers to write TIE
|
|
that causes more address registers to be affected, but it is generally
|
|
unlikely. If that ever happens, more registers needs to be saved/restored
|
|
around this macro invocation, and the value in a15 needs to be recomputed.
|
|
*/
|
|
xchal_cpi_store_funcbody
|
|
|
|
.L_check_new:
|
|
/* Check if any state has to be restored for new owner. */
|
|
/* NOTE: a15 = new owner's save area, cannot be zero when we get here. */
|
|
|
|
l16ui a3, a15, XT_CPSTORED /* a3 = new owner's CPSTORED */
|
|
movi a4, _xt_coproc_sa_offset
|
|
bnone a3, a0, .L_check_cs /* full CP not saved, check callee-saved */
|
|
xor a3, a3, a0 /* CPSTORED bit is set, clear it */
|
|
s16i a3, a15, XT_CPSTORED /* update new owner's CPSTORED */
|
|
|
|
/* Adjust new owner's save area pointers to area for CP n. */
|
|
extui a3, a0, 16, 5 /* a3 = CP index = n */
|
|
addx4 a4, a3, a4 /* a4 = &_xt_coproc_sa_offset[n] */
|
|
l32i a4, a4, 0 /* a4 = XT_CP[n]_SA */
|
|
l32i a5, a15, XT_CP_ASA /* ptr to actual (aligned) save area */
|
|
add a2, a4, a5 /* a2 = new owner's area for CP */
|
|
|
|
/*
|
|
The config-specific HAL macro invoked below destroys a2-5, preserves a0-1.
|
|
It is theoretically possible for Xtensa processor designers to write TIE
|
|
that causes more address registers to be affected, but it is generally
|
|
unlikely. If that ever happens, more registers needs to be saved/restored
|
|
around this macro invocation.
|
|
*/
|
|
xchal_cpi_load_funcbody
|
|
|
|
/* Restore interruptee's saved registers. */
|
|
/* Can omit rsync for wsr.CPENABLE here because _xt_user_exit does it. */
|
|
.L_xt_coproc_done:
|
|
l32i a15, sp, XT_STK_A15
|
|
l32i a5, sp, XT_STK_A5
|
|
l32i a4, sp, XT_STK_A4
|
|
l32i a3, sp, XT_STK_A3
|
|
l32i a2, sp, XT_STK_A2
|
|
call0 _xt_user_exit /* return via exit dispatcher */
|
|
/* Never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.L_check_cs:
|
|
/* a0 = CP mask in low bits, a15 = new owner's save area */
|
|
l16ui a2, a15, XT_CP_CS_ST /* a2 = mask of CPs saved */
|
|
bnone a2, a0, .L_xt_coproc_done /* if no match then done */
|
|
and a2, a2, a0 /* a2 = which CPs to restore */
|
|
extui a2, a2, 0, 8 /* extract low 8 bits */
|
|
s32i a6, sp, XT_STK_A6 /* save extra needed regs */
|
|
s32i a7, sp, XT_STK_A7
|
|
s32i a13, sp, XT_STK_A13
|
|
s32i a14, sp, XT_STK_A14
|
|
call0 _xt_coproc_restorecs /* restore CP registers */
|
|
l32i a6, sp, XT_STK_A6 /* restore saved registers */
|
|
l32i a7, sp, XT_STK_A7
|
|
l32i a13, sp, XT_STK_A13
|
|
l32i a14, sp, XT_STK_A14
|
|
j .L_xt_coproc_done
|
|
|
|
/* Co-processor exception occurred outside a thread (not supported). */
|
|
.L_xt_coproc_invalid:
|
|
#if XCHAL_HAVE_DEBUG
|
|
break 1, 1 /* unhandled user exception */
|
|
#endif
|
|
call0 _xt_panic /* not in a thread (invalid) */
|
|
/* never returns */
|
|
|
|
|
|
#endif /* XCHAL_CP_NUM */
|
|
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
Level 1 interrupt dispatch. Assumes stack frame has not been allocated yet.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.text
|
|
.type _xt_lowint1,@function
|
|
.align 4
|
|
|
|
_xt_lowint1:
|
|
mov a0, sp /* sp == a1 */
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */
|
|
rsr a0, PS /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_1 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_1 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
movi a0, _xt_user_exit /* save exit point for dispatch */
|
|
s32i a0, sp, XT_STK_EXIT
|
|
|
|
/* Save rest of interrupt context and enter RTOS. */
|
|
call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */
|
|
|
|
/* !! We are now on the RTOS system stack !! */
|
|
|
|
/* Set up PS for C, enable interrupts above this level and clear EXCM. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
movi a0, PS_INTLEVEL(1) | PS_UM
|
|
#else
|
|
movi a0, PS_INTLEVEL(1) | PS_UM | PS_WOE
|
|
#endif
|
|
wsr a0, PS
|
|
rsync
|
|
|
|
/* OK to call C code at this point, dispatch user ISRs */
|
|
|
|
dispatch_c_isr 1 XCHAL_INTLEVEL1_MASK
|
|
|
|
/* Done handling interrupts, transfer control to OS */
|
|
call0 XT_RTOS_INT_EXIT /* does not return directly here */
|
|
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
MEDIUM PRIORITY (LEVEL 2+) INTERRUPT VECTORS AND LOW LEVEL HANDLERS.
|
|
|
|
Medium priority interrupts are by definition those with priority greater
|
|
than 1 and not greater than XCHAL_EXCM_LEVEL. These are disabled by
|
|
setting PS.EXCM and therefore can easily support a C environment for
|
|
handlers in C, and interact safely with an RTOS.
|
|
|
|
Each vector goes at a predetermined location according to the Xtensa
|
|
hardware configuration, which is ensured by its placement in a special
|
|
section known to the Xtensa linker support package (LSP). It performs
|
|
the minimum necessary before jumping to the handler in the .text section.
|
|
|
|
The corresponding handler goes in the normal .text section. It sets up
|
|
the appropriate stack frame, saves a few vector-specific registers and
|
|
calls XT_RTOS_INT_ENTER to save the rest of the interrupted context
|
|
and enter the RTOS, then sets up a C environment. It then calls the
|
|
user's interrupt handler code (which may be coded in C) and finally
|
|
calls XT_RTOS_INT_EXIT to transfer control to the RTOS for scheduling.
|
|
|
|
While XT_RTOS_INT_EXIT does not return directly to the interruptee,
|
|
eventually the RTOS scheduler will want to dispatch the interrupted
|
|
task or handler. The scheduler will return to the exit point that was
|
|
saved in the interrupt stack frame at XT_STK_EXIT.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
|
|
#if XCHAL_EXCM_LEVEL >= 2
|
|
|
|
.begin literal_prefix .Level2InterruptVector
|
|
.section .Level2InterruptVector.text, "ax"
|
|
.global _Level2Vector
|
|
.type _Level2Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level2Vector:
|
|
wsr a0, EXCSAVE_2 /* preserve a0 */
|
|
call0 _xt_medint2 /* load interrupt handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_medint2,@function
|
|
.align 4
|
|
_xt_medint2:
|
|
mov a0, sp /* sp == a1 */
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */
|
|
rsr a0, EPS_2 /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_2 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_2 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
movi a0, _xt_medint2_exit /* save exit point for dispatch */
|
|
s32i a0, sp, XT_STK_EXIT
|
|
|
|
/* Save rest of interrupt context and enter RTOS. */
|
|
call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */
|
|
|
|
/* !! We are now on the RTOS system stack !! */
|
|
|
|
/* Set up PS for C, enable interrupts above this level and clear EXCM. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
movi a0, PS_INTLEVEL(2) | PS_UM
|
|
#else
|
|
movi a0, PS_INTLEVEL(2) | PS_UM | PS_WOE
|
|
#endif
|
|
wsr a0, PS
|
|
rsync
|
|
|
|
/* OK to call C code at this point, dispatch user ISRs */
|
|
|
|
dispatch_c_isr 2 XCHAL_INTLEVEL2_MASK
|
|
|
|
/* Done handling interrupts, transfer control to OS */
|
|
call0 XT_RTOS_INT_EXIT /* does not return directly here */
|
|
|
|
/*
|
|
Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT
|
|
on entry and used to return to a thread or interrupted interrupt handler.
|
|
*/
|
|
.global _xt_medint2_exit
|
|
.type _xt_medint2_exit,@function
|
|
.align 4
|
|
_xt_medint2_exit:
|
|
/* Restore only level-specific regs (the rest were already restored) */
|
|
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
|
wsr a0, EPS_2
|
|
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
|
wsr a0, EPC_2
|
|
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
|
l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */
|
|
rsync /* ensure EPS and EPC written */
|
|
rfi 2
|
|
|
|
#endif /* Level 2 */
|
|
|
|
#if XCHAL_EXCM_LEVEL >= 3
|
|
|
|
.begin literal_prefix .Level3InterruptVector
|
|
.section .Level3InterruptVector.text, "ax"
|
|
.global _Level3Vector
|
|
.type _Level3Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level3Vector:
|
|
wsr a0, EXCSAVE_3 /* preserve a0 */
|
|
call0 _xt_medint3 /* load interrupt handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_medint3,@function
|
|
.align 4
|
|
_xt_medint3:
|
|
mov a0, sp /* sp == a1 */
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */
|
|
rsr a0, EPS_3 /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_3 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_3 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
movi a0, _xt_medint3_exit /* save exit point for dispatch */
|
|
s32i a0, sp, XT_STK_EXIT
|
|
|
|
/* Save rest of interrupt context and enter RTOS. */
|
|
call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */
|
|
|
|
/* !! We are now on the RTOS system stack !! */
|
|
|
|
/* Set up PS for C, enable interrupts above this level and clear EXCM. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
movi a0, PS_INTLEVEL(3) | PS_UM
|
|
#else
|
|
movi a0, PS_INTLEVEL(3) | PS_UM | PS_WOE
|
|
#endif
|
|
wsr a0, PS
|
|
rsync
|
|
|
|
/* OK to call C code at this point, dispatch user ISRs */
|
|
|
|
dispatch_c_isr 3 XCHAL_INTLEVEL3_MASK
|
|
|
|
/* Done handling interrupts, transfer control to OS */
|
|
call0 XT_RTOS_INT_EXIT /* does not return directly here */
|
|
|
|
/*
|
|
Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT
|
|
on entry and used to return to a thread or interrupted interrupt handler.
|
|
*/
|
|
.global _xt_medint3_exit
|
|
.type _xt_medint3_exit,@function
|
|
.align 4
|
|
_xt_medint3_exit:
|
|
/* Restore only level-specific regs (the rest were already restored) */
|
|
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
|
wsr a0, EPS_3
|
|
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
|
wsr a0, EPC_3
|
|
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
|
l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */
|
|
rsync /* ensure EPS and EPC written */
|
|
rfi 3
|
|
|
|
#endif /* Level 3 */
|
|
|
|
#if XCHAL_EXCM_LEVEL >= 4
|
|
|
|
.begin literal_prefix .Level4InterruptVector
|
|
.section .Level4InterruptVector.text, "ax"
|
|
.global _Level4Vector
|
|
.type _Level4Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level4Vector:
|
|
wsr a0, EXCSAVE_4 /* preserve a0 */
|
|
call0 _xt_medint4 /* load interrupt handler */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_medint4,@function
|
|
.align 4
|
|
_xt_medint4:
|
|
mov a0, sp /* sp == a1 */
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */
|
|
rsr a0, EPS_4 /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_4 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_4 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
movi a0, _xt_medint4_exit /* save exit point for dispatch */
|
|
s32i a0, sp, XT_STK_EXIT
|
|
|
|
/* Save rest of interrupt context and enter RTOS. */
|
|
call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */
|
|
|
|
/* !! We are now on the RTOS system stack !! */
|
|
|
|
/* Set up PS for C, enable interrupts above this level and clear EXCM. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
movi a0, PS_INTLEVEL(4) | PS_UM
|
|
#else
|
|
movi a0, PS_INTLEVEL(4) | PS_UM | PS_WOE
|
|
#endif
|
|
wsr a0, PS
|
|
rsync
|
|
|
|
/* OK to call C code at this point, dispatch user ISRs */
|
|
|
|
dispatch_c_isr 4 XCHAL_INTLEVEL4_MASK
|
|
|
|
/* Done handling interrupts, transfer control to OS */
|
|
call0 XT_RTOS_INT_EXIT /* does not return directly here */
|
|
|
|
/*
|
|
Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT
|
|
on entry and used to return to a thread or interrupted interrupt handler.
|
|
*/
|
|
.global _xt_medint4_exit
|
|
.type _xt_medint4_exit,@function
|
|
.align 4
|
|
_xt_medint4_exit:
|
|
/* Restore only level-specific regs (the rest were already restored) */
|
|
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
|
wsr a0, EPS_4
|
|
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
|
wsr a0, EPC_4
|
|
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
|
l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */
|
|
rsync /* ensure EPS and EPC written */
|
|
rfi 4
|
|
|
|
#endif /* Level 4 */
|
|
|
|
#if XCHAL_EXCM_LEVEL >= 5
|
|
|
|
.begin literal_prefix .Level5InterruptVector
|
|
.section .Level5InterruptVector.text, "ax"
|
|
.global _Level5Vector
|
|
.type _Level5Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level5Vector:
|
|
wsr a0, EXCSAVE_5 /* preserve a0 */
|
|
call0 _xt_medint5 /* load interrupt handler */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_medint5,@function
|
|
.align 4
|
|
_xt_medint5:
|
|
mov a0, sp /* sp == a1 */
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */
|
|
rsr a0, EPS_5 /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_5 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_5 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
movi a0, _xt_medint5_exit /* save exit point for dispatch */
|
|
s32i a0, sp, XT_STK_EXIT
|
|
|
|
/* Save rest of interrupt context and enter RTOS. */
|
|
call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */
|
|
|
|
/* !! We are now on the RTOS system stack !! */
|
|
|
|
/* Set up PS for C, enable interrupts above this level and clear EXCM. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
movi a0, PS_INTLEVEL(5) | PS_UM
|
|
#else
|
|
movi a0, PS_INTLEVEL(5) | PS_UM | PS_WOE
|
|
#endif
|
|
wsr a0, PS
|
|
rsync
|
|
|
|
/* OK to call C code at this point, dispatch user ISRs */
|
|
|
|
dispatch_c_isr 5 XCHAL_INTLEVEL5_MASK
|
|
|
|
/* Done handling interrupts, transfer control to OS */
|
|
call0 XT_RTOS_INT_EXIT /* does not return directly here */
|
|
|
|
/*
|
|
Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT
|
|
on entry and used to return to a thread or interrupted interrupt handler.
|
|
*/
|
|
.global _xt_medint5_exit
|
|
.type _xt_medint5_exit,@function
|
|
.align 4
|
|
_xt_medint5_exit:
|
|
/* Restore only level-specific regs (the rest were already restored) */
|
|
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
|
wsr a0, EPS_5
|
|
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
|
wsr a0, EPC_5
|
|
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
|
l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */
|
|
rsync /* ensure EPS and EPC written */
|
|
rfi 5
|
|
|
|
#endif /* Level 5 */
|
|
|
|
#if XCHAL_EXCM_LEVEL >= 6
|
|
|
|
.begin literal_prefix .Level6InterruptVector
|
|
.section .Level6InterruptVector.text, "ax"
|
|
.global _Level6Vector
|
|
.type _Level6Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level6Vector:
|
|
wsr a0, EXCSAVE_6 /* preserve a0 */
|
|
call0 _xt_medint6 /* load interrupt handler */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_medint6,@function
|
|
.align 4
|
|
_xt_medint6:
|
|
mov a0, sp /* sp == a1 */
|
|
addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */
|
|
s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */
|
|
rsr a0, EPS_6 /* save interruptee's PS */
|
|
s32i a0, sp, XT_STK_PS
|
|
rsr a0, EPC_6 /* save interruptee's PC */
|
|
s32i a0, sp, XT_STK_PC
|
|
rsr a0, EXCSAVE_6 /* save interruptee's a0 */
|
|
s32i a0, sp, XT_STK_A0
|
|
movi a0, _xt_medint6_exit /* save exit point for dispatch */
|
|
s32i a0, sp, XT_STK_EXIT
|
|
|
|
/* Save rest of interrupt context and enter RTOS. */
|
|
call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */
|
|
|
|
/* !! We are now on the RTOS system stack !! */
|
|
|
|
/* Set up PS for C, enable interrupts above this level and clear EXCM. */
|
|
#ifdef __XTENSA_CALL0_ABI__
|
|
movi a0, PS_INTLEVEL(6) | PS_UM
|
|
#else
|
|
movi a0, PS_INTLEVEL(6) | PS_UM | PS_WOE
|
|
#endif
|
|
wsr a0, PS
|
|
rsync
|
|
|
|
/* OK to call C code at this point, dispatch user ISRs */
|
|
|
|
dispatch_c_isr 6 XCHAL_INTLEVEL6_MASK
|
|
|
|
/* Done handling interrupts, transfer control to OS */
|
|
call0 XT_RTOS_INT_EXIT /* does not return directly here */
|
|
|
|
/*
|
|
Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT
|
|
on entry and used to return to a thread or interrupted interrupt handler.
|
|
*/
|
|
.global _xt_medint6_exit
|
|
.type _xt_medint6_exit,@function
|
|
.align 4
|
|
_xt_medint6_exit:
|
|
/* Restore only level-specific regs (the rest were already restored) */
|
|
l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */
|
|
wsr a0, EPS_6
|
|
l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */
|
|
wsr a0, EPC_6
|
|
l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */
|
|
l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */
|
|
rsync /* ensure EPS and EPC written */
|
|
rfi 6
|
|
|
|
#endif /* Level 6 */
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
HIGH PRIORITY (LEVEL > XCHAL_EXCM_LEVEL) INTERRUPT VECTORS AND HANDLERS
|
|
|
|
High priority interrupts are by definition those with priorities greater
|
|
than XCHAL_EXCM_LEVEL. This includes non-maskable (NMI). High priority
|
|
interrupts cannot interact with the RTOS, that is they must save all regs
|
|
they use and not call any RTOS function.
|
|
|
|
A further restriction imposed by the Xtensa windowed architecture is that
|
|
high priority interrupts must not modify the stack area even logically
|
|
"above" the top of the interrupted stack (they need to provide their
|
|
own stack or static save area).
|
|
|
|
Cadence Design Systems recommends high priority interrupt handlers be coded in assembly
|
|
and used for purposes requiring very short service times.
|
|
|
|
Here are templates for high priority (level 2+) interrupt vectors.
|
|
They assume only one interrupt per level to avoid the burden of identifying
|
|
which interrupts at this level are pending and enabled. This allows for
|
|
minimum latency and avoids having to save/restore a2 in addition to a0.
|
|
If more than one interrupt per high priority level is configured, this burden
|
|
is on the handler which in any case must provide a way to save and restore
|
|
registers it uses without touching the interrupted stack.
|
|
|
|
Each vector goes at a predetermined location according to the Xtensa
|
|
hardware configuration, which is ensured by its placement in a special
|
|
section known to the Xtensa linker support package (LSP). It performs
|
|
the minimum necessary before jumping to the handler in the .text section.
|
|
|
|
*******************************************************************************/
|
|
|
|
/*
|
|
Currently only shells for high priority interrupt handlers are provided
|
|
here. However a template and example can be found in the Cadence Design Systems tools
|
|
documentation: "Microprocessor Programmer's Guide".
|
|
*/
|
|
|
|
#if XCHAL_NUM_INTLEVELS >=2 && XCHAL_EXCM_LEVEL <2 && XCHAL_DEBUGLEVEL !=2
|
|
|
|
.begin literal_prefix .Level2InterruptVector
|
|
.section .Level2InterruptVector.text, "ax"
|
|
.global _Level2Vector
|
|
.type _Level2Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level2Vector:
|
|
wsr a0, EXCSAVE_2 /* preserve a0 */
|
|
call0 _xt_highint2 /* load interrupt handler */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_highint2,@function
|
|
.align 4
|
|
_xt_highint2:
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/* Call interrupt hook if present to (pre)handle interrupts. */
|
|
movi a0, _xt_intexc_hooks
|
|
l32i a0, a0, 2<<2
|
|
beqz a0, 1f
|
|
.Ln_xt_highint2_call_hook:
|
|
callx0 a0 /* must NOT disturb stack! */
|
|
1:
|
|
#endif
|
|
|
|
/* USER_EDIT:
|
|
ADD HIGH PRIORITY LEVEL 2 INTERRUPT HANDLER CODE HERE.
|
|
*/
|
|
|
|
.align 4
|
|
.L_xt_highint2_exit:
|
|
rsr a0, EXCSAVE_2 /* restore a0 */
|
|
rfi 2
|
|
|
|
#endif /* Level 2 */
|
|
|
|
#if XCHAL_NUM_INTLEVELS >=3 && XCHAL_EXCM_LEVEL <3 && XCHAL_DEBUGLEVEL !=3
|
|
|
|
.begin literal_prefix .Level3InterruptVector
|
|
.section .Level3InterruptVector.text, "ax"
|
|
.global _Level3Vector
|
|
.type _Level3Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level3Vector:
|
|
wsr a0, EXCSAVE_3 /* preserve a0 */
|
|
call0 _xt_highint3 /* load interrupt handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_highint3,@function
|
|
.align 4
|
|
_xt_highint3:
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/* Call interrupt hook if present to (pre)handle interrupts. */
|
|
movi a0, _xt_intexc_hooks
|
|
l32i a0, a0, 3<<2
|
|
beqz a0, 1f
|
|
.Ln_xt_highint3_call_hook:
|
|
callx0 a0 /* must NOT disturb stack! */
|
|
1:
|
|
#endif
|
|
|
|
/* USER_EDIT:
|
|
ADD HIGH PRIORITY LEVEL 3 INTERRUPT HANDLER CODE HERE.
|
|
*/
|
|
|
|
.align 4
|
|
.L_xt_highint3_exit:
|
|
rsr a0, EXCSAVE_3 /* restore a0 */
|
|
rfi 3
|
|
|
|
#endif /* Level 3 */
|
|
|
|
#if XCHAL_NUM_INTLEVELS >=4 && XCHAL_EXCM_LEVEL <4 && XCHAL_DEBUGLEVEL !=4
|
|
|
|
.begin literal_prefix .Level4InterruptVector
|
|
.section .Level4InterruptVector.text, "ax"
|
|
.global _Level4Vector
|
|
.type _Level4Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level4Vector:
|
|
wsr a0, EXCSAVE_4 /* preserve a0 */
|
|
call0 _xt_highint4 /* load interrupt handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_highint4,@function
|
|
.align 4
|
|
_xt_highint4:
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/* Call interrupt hook if present to (pre)handle interrupts. */
|
|
movi a0, _xt_intexc_hooks
|
|
l32i a0, a0, 4<<2
|
|
beqz a0, 1f
|
|
.Ln_xt_highint4_call_hook:
|
|
callx0 a0 /* must NOT disturb stack! */
|
|
1:
|
|
#endif
|
|
|
|
/* USER_EDIT:
|
|
ADD HIGH PRIORITY LEVEL 4 INTERRUPT HANDLER CODE HERE.
|
|
*/
|
|
|
|
.align 4
|
|
.L_xt_highint4_exit:
|
|
rsr a0, EXCSAVE_4 /* restore a0 */
|
|
rfi 4
|
|
|
|
#endif /* Level 4 */
|
|
|
|
#if XCHAL_NUM_INTLEVELS >=5 && XCHAL_EXCM_LEVEL <5 && XCHAL_DEBUGLEVEL !=5
|
|
|
|
.begin literal_prefix .Level5InterruptVector
|
|
.section .Level5InterruptVector.text, "ax"
|
|
.global _Level5Vector
|
|
.type _Level5Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level5Vector:
|
|
wsr a0, EXCSAVE_5 /* preserve a0 */
|
|
call0 _xt_highint5 /* load interrupt handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_highint5,@function
|
|
.align 4
|
|
_xt_highint5:
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/* Call interrupt hook if present to (pre)handle interrupts. */
|
|
movi a0, _xt_intexc_hooks
|
|
l32i a0, a0, 5<<2
|
|
beqz a0, 1f
|
|
.Ln_xt_highint5_call_hook:
|
|
callx0 a0 /* must NOT disturb stack! */
|
|
1:
|
|
#endif
|
|
|
|
/* USER_EDIT:
|
|
ADD HIGH PRIORITY LEVEL 5 INTERRUPT HANDLER CODE HERE.
|
|
*/
|
|
|
|
.align 4
|
|
.L_xt_highint5_exit:
|
|
rsr a0, EXCSAVE_5 /* restore a0 */
|
|
rfi 5
|
|
|
|
#endif /* Level 5 */
|
|
|
|
#if XCHAL_NUM_INTLEVELS >=6 && XCHAL_EXCM_LEVEL <6 && XCHAL_DEBUGLEVEL !=6
|
|
|
|
.begin literal_prefix .Level6InterruptVector
|
|
.section .Level6InterruptVector.text, "ax"
|
|
.global _Level6Vector
|
|
.type _Level6Vector,@function
|
|
.literal_position
|
|
|
|
.align 4
|
|
_Level6Vector:
|
|
wsr a0, EXCSAVE_6 /* preserve a0 */
|
|
call0 _xt_highint6 /* load interrupt handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_highint6,@function
|
|
.align 4
|
|
_xt_highint6:
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/* Call interrupt hook if present to (pre)handle interrupts. */
|
|
movi a0, _xt_intexc_hooks
|
|
l32i a0, a0, 6<<2
|
|
beqz a0, 1f
|
|
.Ln_xt_highint6_call_hook:
|
|
callx0 a0 /* must NOT disturb stack! */
|
|
1:
|
|
#endif
|
|
|
|
/* USER_EDIT:
|
|
ADD HIGH PRIORITY LEVEL 6 INTERRUPT HANDLER CODE HERE.
|
|
*/
|
|
|
|
.align 4
|
|
.L_xt_highint6_exit:
|
|
rsr a0, EXCSAVE_6 /* restore a0 */
|
|
rfi 6
|
|
|
|
#endif /* Level 6 */
|
|
|
|
#if XCHAL_HAVE_NMI
|
|
|
|
#define NMI_STACK_CANARY 0xABBABABA
|
|
|
|
/* Stack space for NMI handler
|
|
|
|
NMI handler stack high water mark measured at 0x134 bytes. Any use
|
|
of the NMI timer callback will add stack overhead as well.
|
|
|
|
The NMI handler does a basic check for stack overflow
|
|
*/
|
|
|
|
.section .bss
|
|
.balign 16
|
|
|
|
NMIHandlerStack:
|
|
.skip 0x200
|
|
.NMIHandlerStackTop:
|
|
|
|
.begin literal_prefix .NMIExceptionVector
|
|
.section .NMIExceptionVector.text, "ax"
|
|
.global _NMIExceptionVector
|
|
.type _NMIExceptionVector,@function
|
|
.literal_position
|
|
.align 4
|
|
|
|
_NMIExceptionVector:
|
|
|
|
wsr a0, EXCSAVE + XCHAL_NMILEVEL _ /* preserve a0 */
|
|
call0 _xt_nmi /* load interrupt handler */
|
|
/* never returns here - call0 is used as a jump (see note at top) */
|
|
|
|
.end literal_prefix
|
|
|
|
.text
|
|
.type _xt_nmi,@function
|
|
.align 4
|
|
_xt_nmi:
|
|
|
|
#ifdef XT_INTEXC_HOOKS
|
|
/* Call interrupt hook if present to (pre)handle interrupts. */
|
|
movi a0, _xt_intexc_hooks
|
|
l32i a0, a0, XCHAL_NMILEVEL<<2
|
|
beqz a0, 1f
|
|
.Ln_xt_nmi_call_hook:
|
|
callx0 a0 /* must NOT disturb stack! */
|
|
1:
|
|
#endif
|
|
|
|
/* USER_EDIT:
|
|
ADD HIGH PRIORITY NON-MASKABLE INTERRUPT (NMI) HANDLER CODE HERE.
|
|
*/
|
|
#if defined(RIOT_VERSION) && defined(MCU_ESP8266)
|
|
|
|
rsr a0, EXCSAVE + XCHAL_NMILEVEL /* restore a0 as saved in _NMIExceptionHandler */
|
|
|
|
/*************************** NMI Handler BEGIN **************************/
|
|
/*
|
|
* PLEASE NOTE: The code between "NMI Handler BEGIN" and
|
|
* "NMI Handler END" markers was extracted from esp-open-rtos.
|
|
* It is under the following copyright:
|
|
*
|
|
* Part of esp-open-rtos
|
|
* Original vector contents Copyright (C) 2014-2015 Espressif Systems
|
|
* Additions Copyright (C) Superhouse Automation Pty Ltd and Angus Gratton
|
|
* BSD Licensed as described in the file LICENSE.
|
|
*/
|
|
wsr sp, excsave3 # excsave3 holds user stack
|
|
movi sp, .NMIHandlerStackTop - 0x40
|
|
s32i a0, sp, 0x00
|
|
s32i a2, sp, 0x04
|
|
s32i a3, sp, 0x08
|
|
s32i a4, sp, 0x0c
|
|
s32i a5, sp, 0x10
|
|
s32i a6, sp, 0x14
|
|
s32i a7, sp, 0x18
|
|
s32i a8, sp, 0x1c
|
|
s32i a9, sp, 0x20
|
|
s32i a10, sp, 0x24
|
|
s32i a11, sp, 0x28
|
|
rsr a0, epc1
|
|
s32i a0, sp, 0x2c
|
|
rsr a0, exccause
|
|
s32i a0, sp, 0x30
|
|
rsr a0, excsave1
|
|
s32i a0, sp, 0x34
|
|
rsr a0, excvaddr
|
|
s32i a0, sp, 0x38
|
|
rsr a0, sar
|
|
s32i a0, sp, 0x3c
|
|
movi a0, 0x23 # Override PS for NMI handler
|
|
wsr a0, ps
|
|
rsync
|
|
|
|
/* mark the stack overflow point before we call the actual NMI handler */
|
|
movi a0, NMIHandlerStack
|
|
movi a2, NMI_STACK_CANARY
|
|
s32i a2, a0, 0x00
|
|
|
|
call0 wDev_ProcessFiq
|
|
|
|
/* verify we didn't overflow */
|
|
movi a0, NMIHandlerStack
|
|
l32i a3, a0, 0
|
|
movi a2, NMI_STACK_CANARY
|
|
bne a3, a2, _xt_panic /* .NMIFatalStackOverflow */
|
|
|
|
l32i a0, sp, 0x3c
|
|
wsr a0, sar
|
|
l32i a0, sp, 0x38
|
|
wsr a0, excvaddr
|
|
l32i a0, sp, 0x34
|
|
wsr a0, excsave1
|
|
l32i a0, sp, 0x30
|
|
wsr a0, exccause
|
|
l32i a0, sp, 0x2c
|
|
wsr a0, epc1
|
|
l32i a11, sp, 0x28
|
|
l32i a10, sp, 0x24
|
|
l32i a9, sp, 0x20
|
|
l32i a8, sp, 0x1c
|
|
l32i a7, sp, 0x18
|
|
l32i a6, sp, 0x14
|
|
l32i a5, sp, 0x10
|
|
l32i a4, sp, 0x0c
|
|
l32i a3, sp, 0x08
|
|
movi a0, 0x33 # Reset PS
|
|
wsr a0, ps
|
|
rsync
|
|
/* set dport nmi status to 1 (wDev_ProcessFiq clears bit 0 and verifies it
|
|
* stays cleared, see
|
|
* http://esp8266-re.foogod.com/wiki/WDev_ProcessFiq_%28IoT_RTOS_SDK_0.9.9%29)
|
|
*/
|
|
movi a0, 0x3ff00000
|
|
movi a2, 0x1
|
|
s32i a2, a0, 0
|
|
l32i a2, sp, 0x04
|
|
l32i a0, sp, 0x00
|
|
movi a1, 0x0
|
|
xsr a1, excsave3 # Load stack back from excsave3, clear excsave3
|
|
rfi XCHAL_NMILEVEL
|
|
|
|
.section .rodata
|
|
.NMIStackOverflowErrorMsg:
|
|
.string "\nFATAL: NMI Stack Overflow\n"
|
|
|
|
.section .NMIExceptionhandler.text, "ax"
|
|
.literal_position
|
|
|
|
.NMIFatalStackOverflow:
|
|
movi a2, .NMIStackOverflowErrorMsg
|
|
call0 printf
|
|
|
|
.NMIInfiniteLoop:
|
|
j .NMIInfiniteLoop /* TODO: replace with call to abort() */
|
|
|
|
/*************************** NMI Handler END ****************************/
|
|
|
|
#endif /* defined(RIOT_VERSION) && defined(MCU_ESP8266) */
|
|
|
|
.align 4
|
|
.L_xt_nmi_exit:
|
|
rsr a0, EXCSAVE + XCHAL_NMILEVEL /* restore a0 */
|
|
rfi XCHAL_NMILEVEL
|
|
|
|
#endif /* NMI */
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
WINDOW OVERFLOW AND UNDERFLOW EXCEPTION VECTORS AND ALLOCA EXCEPTION HANDLER
|
|
|
|
Here is the code for each window overflow/underflow exception vector and
|
|
(interspersed) efficient code for handling the alloca exception cause.
|
|
Window exceptions are handled entirely in the vector area and are very
|
|
tight for performance. The alloca exception is also handled entirely in
|
|
the window vector area so comes at essentially no cost in code size.
|
|
Users should never need to modify them and Cadence Design Systems recommends
|
|
they do not.
|
|
|
|
Window handlers go at predetermined vector locations according to the
|
|
Xtensa hardware configuration, which is ensured by their placement in a
|
|
special section known to the Xtensa linker support package (LSP). Since
|
|
their offsets in that section are always the same, the LSPs do not define
|
|
a section per vector.
|
|
|
|
These things are coded for XEA2 only (XEA1 is not supported).
|
|
|
|
Note on Underflow Handlers:
|
|
The underflow handler for returning from call[i+1] to call[i]
|
|
must preserve all the registers from call[i+1]'s window.
|
|
In particular, a0 and a1 must be preserved because the RETW instruction
|
|
will be reexecuted (and may even underflow if an intervening exception
|
|
has flushed call[i]'s registers).
|
|
Registers a2 and up may contain return values.
|
|
|
|
*******************************************************************************/
|
|
|
|
#if XCHAL_HAVE_WINDOWED
|
|
|
|
.section .WindowVectors.text, "ax"
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Window Overflow Exception for Call4.
|
|
|
|
Invoked if a call[i] referenced a register (a4-a15)
|
|
that contains data from ancestor call[j];
|
|
call[j] had done a call4 to call[j+1].
|
|
On entry here:
|
|
window rotated to call[j] start point;
|
|
a0-a3 are registers to be saved;
|
|
a4-a15 must be preserved;
|
|
a5 is call[j+1]'s stack pointer.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.org 0x0
|
|
.global _WindowOverflow4
|
|
_WindowOverflow4:
|
|
|
|
s32e a0, a5, -16 /* save a0 to call[j+1]'s stack frame */
|
|
s32e a1, a5, -12 /* save a1 to call[j+1]'s stack frame */
|
|
s32e a2, a5, -8 /* save a2 to call[j+1]'s stack frame */
|
|
s32e a3, a5, -4 /* save a3 to call[j+1]'s stack frame */
|
|
rfwo /* rotates back to call[i] position */
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Window Underflow Exception for Call4
|
|
|
|
Invoked by RETW returning from call[i+1] to call[i]
|
|
where call[i]'s registers must be reloaded (not live in ARs);
|
|
where call[i] had done a call4 to call[i+1].
|
|
On entry here:
|
|
window rotated to call[i] start point;
|
|
a0-a3 are undefined, must be reloaded with call[i].reg[0..3];
|
|
a4-a15 must be preserved (they are call[i+1].reg[0..11]);
|
|
a5 is call[i+1]'s stack pointer.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.org 0x40
|
|
.global _WindowUnderflow4
|
|
_WindowUnderflow4:
|
|
|
|
l32e a0, a5, -16 /* restore a0 from call[i+1]'s stack frame */
|
|
l32e a1, a5, -12 /* restore a1 from call[i+1]'s stack frame */
|
|
l32e a2, a5, -8 /* restore a2 from call[i+1]'s stack frame */
|
|
l32e a3, a5, -4 /* restore a3 from call[i+1]'s stack frame */
|
|
rfwu
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Handle alloca exception generated by interruptee executing 'movsp'.
|
|
This uses space between the window vectors, so is essentially "free".
|
|
All interruptee's regs are intact except a0 which is saved in EXCSAVE_1,
|
|
and PS.EXCM has been set by the exception hardware (can't be interrupted).
|
|
The fact the alloca exception was taken means the registers associated with
|
|
the base-save area have been spilled and will be restored by the underflow
|
|
handler, so those 4 registers are available for scratch.
|
|
The code is optimized to avoid unaligned branches and minimize cache misses.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.align 4
|
|
.global _xt_alloca_exc
|
|
_xt_alloca_exc:
|
|
|
|
rsr a0, WINDOWBASE /* grab WINDOWBASE before rotw changes it */
|
|
rotw -1 /* WINDOWBASE goes to a4, new a0-a3 are scratch */
|
|
rsr a2, PS
|
|
extui a3, a2, XCHAL_PS_OWB_SHIFT, XCHAL_PS_OWB_BITS
|
|
xor a3, a3, a4 /* bits changed from old to current windowbase */
|
|
rsr a4, EXCSAVE_1 /* restore original a0 (now in a4) */
|
|
slli a3, a3, XCHAL_PS_OWB_SHIFT
|
|
xor a2, a2, a3 /* flip changed bits in old window base */
|
|
wsr a2, PS /* update PS.OWB to new window base */
|
|
rsync
|
|
|
|
_bbci.l a4, 31, _WindowUnderflow4
|
|
rotw -1 /* original a0 goes to a8 */
|
|
_bbci.l a8, 30, _WindowUnderflow8
|
|
rotw -1
|
|
j _WindowUnderflow12
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Window Overflow Exception for Call8
|
|
|
|
Invoked if a call[i] referenced a register (a4-a15)
|
|
that contains data from ancestor call[j];
|
|
call[j] had done a call8 to call[j+1].
|
|
On entry here:
|
|
window rotated to call[j] start point;
|
|
a0-a7 are registers to be saved;
|
|
a8-a15 must be preserved;
|
|
a9 is call[j+1]'s stack pointer.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.org 0x80
|
|
.global _WindowOverflow8
|
|
_WindowOverflow8:
|
|
|
|
s32e a0, a9, -16 /* save a0 to call[j+1]'s stack frame */
|
|
l32e a0, a1, -12 /* a0 <- call[j-1]'s sp
|
|
(used to find end of call[j]'s frame) */
|
|
s32e a1, a9, -12 /* save a1 to call[j+1]'s stack frame */
|
|
s32e a2, a9, -8 /* save a2 to call[j+1]'s stack frame */
|
|
s32e a3, a9, -4 /* save a3 to call[j+1]'s stack frame */
|
|
s32e a4, a0, -32 /* save a4 to call[j]'s stack frame */
|
|
s32e a5, a0, -28 /* save a5 to call[j]'s stack frame */
|
|
s32e a6, a0, -24 /* save a6 to call[j]'s stack frame */
|
|
s32e a7, a0, -20 /* save a7 to call[j]'s stack frame */
|
|
rfwo /* rotates back to call[i] position */
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Window Underflow Exception for Call8
|
|
|
|
Invoked by RETW returning from call[i+1] to call[i]
|
|
where call[i]'s registers must be reloaded (not live in ARs);
|
|
where call[i] had done a call8 to call[i+1].
|
|
On entry here:
|
|
window rotated to call[i] start point;
|
|
a0-a7 are undefined, must be reloaded with call[i].reg[0..7];
|
|
a8-a15 must be preserved (they are call[i+1].reg[0..7]);
|
|
a9 is call[i+1]'s stack pointer.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.org 0xC0
|
|
.global _WindowUnderflow8
|
|
_WindowUnderflow8:
|
|
|
|
l32e a0, a9, -16 /* restore a0 from call[i+1]'s stack frame */
|
|
l32e a1, a9, -12 /* restore a1 from call[i+1]'s stack frame */
|
|
l32e a2, a9, -8 /* restore a2 from call[i+1]'s stack frame */
|
|
l32e a7, a1, -12 /* a7 <- call[i-1]'s sp
|
|
(used to find end of call[i]'s frame) */
|
|
l32e a3, a9, -4 /* restore a3 from call[i+1]'s stack frame */
|
|
l32e a4, a7, -32 /* restore a4 from call[i]'s stack frame */
|
|
l32e a5, a7, -28 /* restore a5 from call[i]'s stack frame */
|
|
l32e a6, a7, -24 /* restore a6 from call[i]'s stack frame */
|
|
l32e a7, a7, -20 /* restore a7 from call[i]'s stack frame */
|
|
rfwu
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Window Overflow Exception for Call12
|
|
|
|
Invoked if a call[i] referenced a register (a4-a15)
|
|
that contains data from ancestor call[j];
|
|
call[j] had done a call12 to call[j+1].
|
|
On entry here:
|
|
window rotated to call[j] start point;
|
|
a0-a11 are registers to be saved;
|
|
a12-a15 must be preserved;
|
|
a13 is call[j+1]'s stack pointer.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.org 0x100
|
|
.global _WindowOverflow12
|
|
_WindowOverflow12:
|
|
|
|
s32e a0, a13, -16 /* save a0 to call[j+1]'s stack frame */
|
|
l32e a0, a1, -12 /* a0 <- call[j-1]'s sp
|
|
(used to find end of call[j]'s frame) */
|
|
s32e a1, a13, -12 /* save a1 to call[j+1]'s stack frame */
|
|
s32e a2, a13, -8 /* save a2 to call[j+1]'s stack frame */
|
|
s32e a3, a13, -4 /* save a3 to call[j+1]'s stack frame */
|
|
s32e a4, a0, -48 /* save a4 to end of call[j]'s stack frame */
|
|
s32e a5, a0, -44 /* save a5 to end of call[j]'s stack frame */
|
|
s32e a6, a0, -40 /* save a6 to end of call[j]'s stack frame */
|
|
s32e a7, a0, -36 /* save a7 to end of call[j]'s stack frame */
|
|
s32e a8, a0, -32 /* save a8 to end of call[j]'s stack frame */
|
|
s32e a9, a0, -28 /* save a9 to end of call[j]'s stack frame */
|
|
s32e a10, a0, -24 /* save a10 to end of call[j]'s stack frame */
|
|
s32e a11, a0, -20 /* save a11 to end of call[j]'s stack frame */
|
|
rfwo /* rotates back to call[i] position */
|
|
|
|
/*
|
|
--------------------------------------------------------------------------------
|
|
Window Underflow Exception for Call12
|
|
|
|
Invoked by RETW returning from call[i+1] to call[i]
|
|
where call[i]'s registers must be reloaded (not live in ARs);
|
|
where call[i] had done a call12 to call[i+1].
|
|
On entry here:
|
|
window rotated to call[i] start point;
|
|
a0-a11 are undefined, must be reloaded with call[i].reg[0..11];
|
|
a12-a15 must be preserved (they are call[i+1].reg[0..3]);
|
|
a13 is call[i+1]'s stack pointer.
|
|
--------------------------------------------------------------------------------
|
|
*/
|
|
|
|
.org 0x140
|
|
.global _WindowUnderflow12
|
|
_WindowUnderflow12:
|
|
|
|
l32e a0, a13, -16 /* restore a0 from call[i+1]'s stack frame */
|
|
l32e a1, a13, -12 /* restore a1 from call[i+1]'s stack frame */
|
|
l32e a2, a13, -8 /* restore a2 from call[i+1]'s stack frame */
|
|
l32e a11, a1, -12 /* a11 <- call[i-1]'s sp
|
|
(used to find end of call[i]'s frame) */
|
|
l32e a3, a13, -4 /* restore a3 from call[i+1]'s stack frame */
|
|
l32e a4, a11, -48 /* restore a4 from end of call[i]'s stack frame */
|
|
l32e a5, a11, -44 /* restore a5 from end of call[i]'s stack frame */
|
|
l32e a6, a11, -40 /* restore a6 from end of call[i]'s stack frame */
|
|
l32e a7, a11, -36 /* restore a7 from end of call[i]'s stack frame */
|
|
l32e a8, a11, -32 /* restore a8 from end of call[i]'s stack frame */
|
|
l32e a9, a11, -28 /* restore a9 from end of call[i]'s stack frame */
|
|
l32e a10, a11, -24 /* restore a10 from end of call[i]'s stack frame */
|
|
l32e a11, a11, -20 /* restore a11 from end of call[i]'s stack frame */
|
|
rfwu
|
|
|
|
#endif /* XCHAL_HAVE_WINDOWED */
|