1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/boards/remote-pa/README.md
2018-10-12 15:55:04 +02:00

118 lines
3.8 KiB
Markdown

Zolertia RE-Mote platform
============================================
<a href="url"><img src="https://zolertia.io/wp-content/uploads/2017/06/Untitled-design-12.png" align="center" height="320" ></a>
The RE-Mote platform (prototype A) is a IoT Hardware development platform based
on TI's CC2538 system on chip (SoC), featuring an ARM Cortex-M3 with 512KB
flash, 32Kb RAM, double RF interface, and the following goodies:
* ISM 2.4-GHz IEEE 802.15.4 & Zigbee compliant.
* ISM 868-, 915-, 920-, 950-MHz ISM/SRD Band.
* AES-128/256, SHA2 Hardware Encryption Engine.
* ECC-128/256, RSA Hardware Acceleration Engine for Secure Key Exchange.
* Power consumption down to 3uA using our shutdown mode.
* Co-Processor to allow peripheral management, programming over BSL without requiring to press any button to enter bootloader mode.
* Built-in battery charger (500mA), Energy Harvesting and Solar Panels to be connected to standards LiPo batteries.
* Power input with wide range 2-26VDC.
* Built-in TMP102 temperature sensor
* Small form-factor (as the Z1 mote, half the size of an Arduino) 57x35 mm.
This version was the first RE-Mote prototype, available to select users and beta
testers. A commercially available new model (namely the Revision A) is also
ported to RIOT.
Port Features
=============
In terms of hardware support, the following drivers have been implemented:
* CC2538 System-on-Chip:
* UART
* Random number generator
* Low Power Modes
* General-Purpose Timers.
* ADC
* LEDs
* Buttons
* Internal/external 2.4GHz antenna switch controllable by SW
* RF 2.4GHz built-in in CC2538
And under work or pending at cc2538 base cpu:
* Built-in core temperature and battery sensor.
* TMP102 temperature sensor driver.
* CC1120 sub-1GHz radio interface.
* Micro-SD external storage.
* USB (in CDC-ACM).
* uDMA Controller.
Requirements
============
* Toolchain to compile RIOT for the CC2538
* Drivers to enable your host to communicate with the platform
* Built-in BSL programming over USB using cc2538-bsl (included)
Install a Toolchain
-------------------
The toolchain used to build is arm-gcc, to check if it is currently installed run:
$ arm-none-eabi-gcc -v
Using built-in specs.
Target: arm-none-eabi
Configured with: /scratch/julian/lite-respin/eabi/src/gcc-4.3/configure
...
(skip)
...
Thread model: single
gcc version 4.3.2 (Sourcery G++ Lite 2008q3-66)
Else install from <https://launchpad.net/gcc-arm-embedded>
Drivers
-------
The Re-Mote features a FTDI serial-to-USB module, the driver is commonly found in most OS, but if required it can be downloaded
from <http://www.ftdichip.com/Drivers/VCP.htm>
### For the CC2538EM (USB CDC-ACM)
The Re-Mote has built-in support for USB 2.0 USB, Vendor and Product IDs are the following:
* VID 0x0451
* PID 0x16C8
On Linux and OS X this is straightforward, on windows you need to install the following driver:
<https://github.com/alignan/lufa/blob/remote-zongle/LUFA/CodeTemplates/WindowsINF/LUFA%20CDC-ACM.inf>
And replace the IDs accordingly.
### Device Enumerations
For the UART, serial line settings are 115200 8N1, no flow control.
Once all drivers have been installed correctly:
On windows, devices will appear as a virtual `COM` port.
On Linux and OS X, devices will appear under `/dev/`.
On OS X:
* XDS backchannel: `tty.usbserial-<serial number>`
* EM in CDC-ACM: `tty.usbmodemf<X><ABC>` (X a letter, ABC a number e.g. `tty.usbmodemfd121`)
On Linux:
* Re-Mote over FTDI: `ttyUSB1`
* Re-Mote over USB driver (in CDC-ACM): `ttyACMn` (n=0, 1, ....)
More Reading
============
2. [CC2538 System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee applications (SWRU319B)][cc2538]
3. [CC1120 sub-1GHz RF transceiver][cc1120]
[cc1120]: http://www.ti.com/cc1120 "CC1120"
[cc2538]: http://www.ti.com/product/cc2538 "CC2538"