When using podman instead of docker the registry is not set by default.
Docker has a builtin registry default "docker.io". Podman does not have a
default. By specifying the registry explicitly both tools can be used.
With RISC-V being a relatively young toolchain, a lot of inconsistencies
between different toolchains are to be found that differ in the target
triple and the flags supported. This build system performs run-time
tests to detect the toolchain and supported flags.
With `BUILD_IN_DOCKER=1` issues arise, as this checks are performed
outside of the docker container. However, the host may have no RISC-V
toolchain installed or a different toolchain, so there is little reason
in performing this detection then. Instead, a hard coded target triple
and supported flags are provided when using `BUILD_IN_DOCKER=1`.
If `AVRDUDE_PROGRAMMER` is already set to a programmer that is also
capable of debugging, we can assume that typically the user will want
to use the same hardware for debugging. Thus, let `AVR_DEBUGDEVICE`
default to the matching hardware.
`tiny_strerror()` is a drop-in replacement for `strerror()`, but
instead of a long help message it returns the much shorter macro name
matching the given number.
The (pseudo-)module `tiny_strerror_as_strerror` can be used to
replace all calls to `strerror()` with calls to `tiny_strerror()`.
Previously `shell_commands` was a "catch-all" module that included
shell commands for each and every used module that has a shell
companion. Instead, the new `shell_cmds` module is now used to provide
shell commands as individually selectable submodules, e.g.
`cmd_gnrc_icmpv6_echo` now provides the ICMPv6 echo command (a.k.a.
ping).
To still have a "catch all" module to pull in shell commands of modules
already used, `shell_cmds_default` was introduced. `shell_commands`
depends now on `shell_cmds_default` for backward compatibility, but
has been deprecated. New apps should use `shell_cmds_default`
instead.
For a handful of shell commands individual selection was already
possible. Those modules now depend on the corresponding `cmd_%` module
and they have been deprecated.
Add tracing support via GPIOs to trace the basic state of the Ethernet
peripheral. The following signals are provided:
- One GPIO pin is toggled on entry of the Ethernet ISR
- On TX start an GPIO is set, on TX completion it is cleared
- On RX complete an GPIO is set, once this is passed to the upper layer
the GPIO is cleared again
In order to reduce the overhead, GPIO LL is used. By default the
on-board LEDs are used as tracing GPIOs. This makes it easy to debug
when the state machine gets stuck without the need to attach a scope or
logic analyzer.
JLink presumably has information about the device's RAM available
internally. Not passing the precise symbol area (which would be
available in the ELF file) because a) that'd make the terminal break
when the flashed firmware does not equal the built one, and b) that
would introduce a dependency from `term` to the ELF file that other
terminals don't have.
When `stdio_cdc_acm` is used, assume `"RIOT-os\.org"` as vendor string
and `$(BOARD)` being used as model string. This is the default
behavior in RIOT since eaace28804
After introducing #18423 there are occasional messages that still happen.
These messages cause a diff output when testing with TEST_KCONFIG=1.
This then causes a failure when comparing make/kconfig modules and packages.
A if `netdev_driver_t::confirm_send()` is provided, it provides the
new netdev API. However, detecting the API at runtime and handling
both API styles comes at a cost. This can be optimized in case only
new or only old style netdevs are in use.
To do so, this adds the pseudo modules `netdev_legacy_api` and
`netdev_new_api`. As right now no netdev actually implements the new
API, all netdevs pull in `netdev_legacy_api`. If `netdev_legacy_api` is
in used but `netdev_new_api` is not, we can safely assume at compile
time that only legacy netdevs are in use. Similar, if only
`netdev_new_api` is used, only support for the new API is needed. Only
when both are in use, run time checks are needed.
This provides two helper function to check for a netif if the
corresponding netdev implements the old or the new API. (With one
being the inverse of the other.) They are suitable for constant folding
when only new or only legacy devices are in use. Consequently, dead
branches should be eliminated by the optimizer.
Allow issuing a reset to bootloader sequence by abusing the RTS and
the DTR pins of a TTL adapter. This makes flashing via UART much
more convenient, as no jumpers need to be placed to select booting to
the bootloader / flash and no reset buttons need to be pressed.
If Quad SPI modes qout or qio are set by variable FLASH_MODE, esptool.py has to be called with parameter `--flash_mode dio` so that the first stage bootloader is always using Dual SPI mode.