Hooking into the existing wrappers for `malloc()`, `calloc()`,
`realloc()`, and `free()`, the new (pseudo) module `malloc_tracing`
prints out the calls to the given functions, the program counter of
the caller, as well as the return result.
The intent is to aid debugging double-frees, invalid frees, or memory
leaks.
Add USE_MODULE += "stdio_uart_onlcr" to enable it.
This is named after the "onlcr" stty flag, which does the same thing.
Co-authored-by: Marian Buschsieweke <marian.buschsieweke@ovgu.de>
Model the LoRaWAN integration to GNRC's netif command (ifconfig) as
submodule of it, namely `shell_cmd_gnrc_netif_lorawan`.
This should fix a regression introduced by
https://github.com/RIOT-OS/RIOT/pull/18355
`tiny_strerror()` is a drop-in replacement for `strerror()`, but
instead of a long help message it returns the much shorter macro name
matching the given number.
The (pseudo-)module `tiny_strerror_as_strerror` can be used to
replace all calls to `strerror()` with calls to `tiny_strerror()`.
Previously `shell_commands` was a "catch-all" module that included
shell commands for each and every used module that has a shell
companion. Instead, the new `shell_cmds` module is now used to provide
shell commands as individually selectable submodules, e.g.
`cmd_gnrc_icmpv6_echo` now provides the ICMPv6 echo command (a.k.a.
ping).
To still have a "catch all" module to pull in shell commands of modules
already used, `shell_cmds_default` was introduced. `shell_commands`
depends now on `shell_cmds_default` for backward compatibility, but
has been deprecated. New apps should use `shell_cmds_default`
instead.
For a handful of shell commands individual selection was already
possible. Those modules now depend on the corresponding `cmd_%` module
and they have been deprecated.
Add tracing support via GPIOs to trace the basic state of the Ethernet
peripheral. The following signals are provided:
- One GPIO pin is toggled on entry of the Ethernet ISR
- On TX start an GPIO is set, on TX completion it is cleared
- On RX complete an GPIO is set, once this is passed to the upper layer
the GPIO is cleared again
In order to reduce the overhead, GPIO LL is used. By default the
on-board LEDs are used as tracing GPIOs. This makes it easy to debug
when the state machine gets stuck without the need to attach a scope or
logic analyzer.
A if `netdev_driver_t::confirm_send()` is provided, it provides the
new netdev API. However, detecting the API at runtime and handling
both API styles comes at a cost. This can be optimized in case only
new or only old style netdevs are in use.
To do so, this adds the pseudo modules `netdev_legacy_api` and
`netdev_new_api`. As right now no netdev actually implements the new
API, all netdevs pull in `netdev_legacy_api`. If `netdev_legacy_api` is
in used but `netdev_new_api` is not, we can safely assume at compile
time that only legacy netdevs are in use. Similar, if only
`netdev_new_api` is used, only support for the new API is needed. Only
when both are in use, run time checks are needed.
This provides two helper function to check for a netif if the
corresponding netdev implements the old or the new API. (With one
being the inverse of the other.) They are suitable for constant folding
when only new or only legacy devices are in use. Consequently, dead
branches should be eliminated by the optimizer.
Module to lock the shell after a given timeout of time x. When the
shell did not receive any input within time x, then the shell is
locked automatically.
This adds a xtimer_no_ztimer_default that is currently always
selected in Makefile, but that can be switched off in Kconfig.
Removing its inclusion will allow switching the default xtimer
backend to ztimer, while allowing for an easy way back.
This PR removes the old xtimer based implementation for sema. Since
this implementation used 64bit timeout, backweard compatibility is
kept by having `sema_wait_timed` be implemented by `ztimer64_usec`
which is enabled by selecting `sema_deprecated`
With this 64bit `sema` api is now deprecated.