Previously `ifconfig` would only know link-local addresses
(printed as 'local') and everything else would be 'global'.
This is wrong for site-local and unique local addresses which were
also denoted as global.
So use the already existing helper functions to determine the correct
type of IPv6 address when printing.
- Added atmega328p to BOARD_BLACKLIST where needed
- Adapted special timer frequency selection in tests/periph_timer to also
select 25kHz for the atmega328p board
When the NIB is compiled for 6LN mode (but not a 6LBR), the Stateless
Address Autoconfiguration (SLAAC) functionality is disabled, as it is
typically not required; see `sys/include/net/gnrc/ipv6/nib/conf.h`, ll.
46 and 55. However, if a non-6LN interface is also compiled in (still
without making the node a border router) an auto-configured address will
be assigned in accordance with [RFC 6775] to the interface, just
assuming the interface is a 6LN interface. As it then only performs
duplicate address detection RFC-6775-style then, the address then never
becomes valid, as the duplicate address detection according to [RFC
4862] (part of the SLAAC functionality) is never performed.
As auto-configuring an address without SLAAC doesn't make sense, this
fix makes the interface skip it completely, but provides a warning to
the user, so they know what to do.
[RFC 6775]: https://tools.ietf.org/html/rfc6775#section-5.2
[RFC 4862]: https://tools.ietf.org/html/rfc4862#section-5.4
The functions now are semantic distinct:
- gnrc_netif_is_6lo(): the interface is a 6Lo interface
- gnrc_netif_is_6ln(): the interface is using Neighbor Discovery
according to RFC 6775
We want to check if the interface is an interface requiring the 6Lo
adaptation layer, not if it is a 6LN according to RFC 6775 [[1]].
[1]: https://tools.ietf.org/html/rfc6775#section-2
Preparation step to introduce a semantic difference between an
interface being a 6Lo interface and a 6LN according to RFC 6775 [[1]]
(i.e. performs Neighbor Discovery as defined there).
[1]: https://tools.ietf.org/html/rfc6775#section-2
When writing to the IPv6 header the implementation currently doesn't
take the packet with the (potentially) duplicated header, but the
packet with the original one, which leads to the packet sent and then
released in `gnrc_netif_ethernet.c` first and then accessed again in
further iterations of the "writing to the IPv6 header" loop, which
causes access to an invalid pointer, causing a crash.
Fixes#11980
Arduino libraries often include Arduino.h. For source code compatibility this header file is required. Header guards in file arduino.hpp had to be renamed.
The ADC2 controller of the ESP32 is used by the WiFi module. The GPIOs connected to the ADC2 controller cannot be used as ADC channels if the WiFi module is enabled. This is clarified by a note in the documentation.