The RTT overflow callback is not available on all RTT implementations.
This means it is either a no-op or `rtt_set_overflow_cb()` is a no-op
or it will overwrite the alarm set with `rtt_set_alarm()`.
This adds a feature to indicate that proper overflow reporting is available.
Current there is no way to split code between ATmega and ATxmega in
drivers. This differentiate AVR8 cores into MEGAs and XMEGAs.
Signed-off-by: Gerson Fernando Budke <nandojve@gmail.com>
Some periph_rtt implementations do not provide `rtt_set_counter()`. This
adds `periph_rtt_set_counter` as feature to allow testing for its
availability. The feature is provided at CPU level if periph_rtt is
provided by the board for all CPUs implementing `rtt_set_counter()`.
Some periph_rtt implementations do not provide `rtt_set_counter()`. This
adds `periph_rtt_set_counter` as feature to allow testing for its
availability. The feature is provided at CPU level if periph_rtt is
provided by the board for all CPUs implementing `rtt_set_counter()`.
Split atmega_common code into avr8_common folder. This moves common
avr8 code to be used for all avr8 variants: tiny, mega and xmega.
Signed-off-by: Gerson Fernando Budke <nandojve@gmail.com>
Split cpu.c file into cpu.c and atmega_cpu.c files. This extract mega
specific code from common code.
Signed-off-by: Gerson Fernando Budke <nandojve@gmail.com>
The module cpu_atmega_common_cxx seems to be non-existing and not used. It is
unclear whether this slipped in by accident or if this was actually useful at
some point in time. In any case, the module is not present (anymore) and cannot
be used, so let's clean up the Makefile.
Split out Gunar Schorcht's clever approach to provide thread safe malloc for
AVR into a system module and make AVR depend on this. This allows other
platforms to also use this.
If a timer triggers while the idle thread is running, previously a stack
overflow was triggered. This commit increases the idle threads stack size if
xtimer is used.
Added a low level implementation of timer_set() that allows setting relative
timeouts as short as 0. This results in tests/periph_timer_short_relative_set
no passing.
The inline assembly implementation was badly in need of improvement.
- irq_disable() took 2 CPU cycles more than needed
- The current interrupt state was stored in a temporary register and
afterwards copied to the target register, rather than storing it in the
target register right away
- The lower bits of the state were cleared (as they have no meaning for the
interrupt status), but the API purposely never required such things from
implementations.
- irq_restore() took 5 CPU cycles. This was reduced to 3 CPU cycles (or 2 CPU
cycles in the best case)