It includes per-board support for the nrfutil programmer used with its
default bootloader; this is not generalized over Adafruit's boards as
they use incompatible versions of nrfutil.
Flashing an ESP board first requires the creation of a flash image from the ELF file. This is realized in the `preflash` target. However, the `preflash` target only depends on the variable `BUILD_BEFORE_FLASH` but on the ELF file. Therefore, the variable `BUILD_BEFORE_FLASH` must be set to the ELF file to ensure that when using multiple make processes, the compilation of the ELF file is completed before the flash image is created.
avrdude.mk and serial.mk was included twice. As a result of the former, avrdude
wasted one flash cycle and some time by writing the same firmware twice.
The AVR Dragon, previously the cheapest debugger/programmer for AVR, is out of
production. The default debugger for AVR devices has been changed to the Atmel
ICE, the now cheapest debugger option. The commit updates the documentation
accordingly.
Additionally the default programmer is changed to the Atmel ICE for consistency.
The doc is updated accordingly.
- avrdude.mk and serial.mk were included twice.
- The former resulted in `make flash` wasting one flash cycle by flashing
the same firmware twice
- Fixed typos (atmega328p instead of atmega1284p)
ztimer_clock are meant to be chained. At the end of the chaine
there is always a timer device object (periph_rtt/rtc/timer).
Since ZTIMER_MSEC and ZTIMER_USEC can be the scaled/shifted with
respect to the base periph_rtt/rtc/timer it makes sense to chain
other ZTIMER_XXX on top of the base rtc/timer/rtt in order to avoid
chained convertions.
`od_hex_dump()` is called if `hdr_len < pkt->size` to print the rest
after `hdr_len` of `pkt`. So if we just leave `hdr_len = 0` instead of
calling `od_hex_dump()` for every other NETTYPE, we achieve the same
effect.
As it is more effective (and already done in some cases) to re-set
`hdr_len` when the header was printed, we initialize `hdr_len` first
with 0 now.
Instead of making a NETTYPE definition dependent on an implementation
module, this change makes it dependent on a pseudo-module for each
specific NETTYPE and makes the respective implementation modules
dependent on it.
This has two advantages:
- one does not need include the whole implementation module to
subscribe to a NETTYPE for testing or to provide an alternative
implementation
- A lot of circular dependencies related to GNRC could be untangled.
E.g. the only reason `gnrc_icmpv6` needs the `gnrc_ipv6` is because it
uses `GNRC_NETTYPE_IPV6` to search for the IPv6 header in an ICMPv6
when demultiplexing an ICMPv6 header.
This change does not resolve these dependencies or include usages where
needed. The only dependency change is the addition of the
pseudo-modules to the implementation modules.