The reassembly buffer only needs (and stores) the headers *before* the
fragment header (called per-fragment headers in RFC 8200, section 4.5).
Currently, when a subsequent IPv6 fragment is received before the first
fragment the fragment header is however not removed. With this fix it
does.
Having the definitions sit in the `net/gnrc/sixlowpan/frag.h` header
does not make much sense, when using Selective Fragment Forwarding
(and the fragmentation buffer already includes a
`net/gnrc/sixlowpan/frag/stats.h` header), so they are moved to their
own header. Since with this change it makes more sense to have the
statistics stored in their own sub-module, the pseudo-module is also
actualized.
When the destination address is the loopback address (`::1`) in GNRC
the selected network interface typically is `NULL`, as with GNRC no
loopback interface de facto exists. So the assertion when checking if
the source address is valid if `netif != NULL` fails on that check.
This change fixes that issue by checking if the destination address is
the loopback address, before checking the validity of the source
address.
This fits with the semantics of this function which doesn't provide or
uses any state of the reassembly buffer provided by the user, but finds
the entry itself and then removes it. This gives the user no chance to
remove the packet in the reassembly buffer entry, so
`gnrc_sixlowpan_frag_rb_rm_by_datagram()` has to release the packet
(other than `gnrc_sixlowpan_frag_rb_remove()` where not releasing the
packet is desired as it might be handed up to an upper layer).
This allows to set a timer between the completion of a datagram in the
reassembly buffer and the deletion of the corresponding reassembly
buffer entry. This allows to ignore potentially late incoming link-layer
duplicates of fragments of the datagram that then will have the
reassembly buffer entry be blocked.
This was noted in this [discussion] for classic 6LoWPAN reassembly (and
minimal fragment forwarding) and is recommended in the current
[selective fragment recovery draft][SFR draft].
[discussion]: https://mailarchive.ietf.org/arch/msg/6lo/Ez0tzZDqawVn6AFhYzAFWUOtJns
[SFR draft]: https://tools.ietf.org/html/draft-ietf-6lo-fragment-recovery-07#section-6
The name `fragment_msg` or `frag_msg`/`msg_frag` always to me was a bit
misplaced, as it basically implements an asynchronous fragmentation
buffer and doesn't necessarily have anything to do with messages.
This change
1. changes the name to `fb` (for fragmentation buffer)
2. factors its code out to its own sub-module so it can be re-used by
other 6LoWPAN fragmentation schemes like [Selective Fragment
Recovery]
[Selective Fragment Recovery]: https://tools.ietf.org/html/draft-ietf-6lo-fragment-recovery-05
The interface is already fetched in the beginning of the function and
doesn't change during its run, so getting the interface again at this
point is just redundant.
When decoding IPHC in a fragmented datagram, relying on the size of the
allocated space for the decoded packet is wrong when fragments are
forwarded and decoded on an intermediate node (for which the reassembly
buffer's space is used): Using the full datagram size for allocation in
this case would be wasteful, so the allocated space is only marginally
larger than the fragment's compressed form.
This in turn results in the wrong UDP payload size being chosen and
even worse being forwarded to the subsequent nodes.
This change uses the (virtual) reassembly buffer's `datagram_size`
instead of relying on the allocated space for the encoded
datagram/fragment.
When the NIB is compiled for 6LN mode (but not a 6LBR), the Stateless
Address Autoconfiguration (SLAAC) functionality is disabled, as it is
typically not required; see `sys/include/net/gnrc/ipv6/nib/conf.h`, ll.
46 and 55. However, if a non-6LN interface is also compiled in (still
without making the node a border router) an auto-configured address will
be assigned in accordance with [RFC 6775] to the interface, just
assuming the interface is a 6LN interface. As it then only performs
duplicate address detection RFC-6775-style then, the address then never
becomes valid, as the duplicate address detection according to [RFC
4862] (part of the SLAAC functionality) is never performed.
As auto-configuring an address without SLAAC doesn't make sense, this
fix makes the interface skip it completely, but provides a warning to
the user, so they know what to do.
[RFC 6775]: https://tools.ietf.org/html/rfc6775#section-5.2
[RFC 4862]: https://tools.ietf.org/html/rfc4862#section-5.4
We want to check if the interface is an interface requiring the 6Lo
adaptation layer, not if it is a 6LN according to RFC 6775 [[1]].
[1]: https://tools.ietf.org/html/rfc6775#section-2
When writing to the IPv6 header the implementation currently doesn't
take the packet with the (potentially) duplicated header, but the
packet with the original one, which leads to the packet sent and then
released in `gnrc_netif_ethernet.c` first and then accessed again in
further iterations of the "writing to the IPv6 header" loop, which
causes access to an invalid pointer, causing a crash.
Fixes#11980
While 485dbd1fda (from #12175) was right
in assuming that the for most ICMPv6 error messages the originating
packet's destination address must not be a multicast, this is not the
case for _all_ ICMPv6 error messages (see [RFC 4443], section 2.4(e.3)).
Additionally, 485dbd1fda removed the
check for the source address ([RFC 4443], section 2.4(e.6)), which this
PR re-adds.
[RFC 4443]: https://tools.ietf.org/html/rfc4443#section-2.4
Rather than dispatching the packet automatically once it is complete,
`gnrc_sixlowpan_frag_rb_add()` now only returns success, and leaves it
to the caller to dispatch the packet.
While it is correct to not use an invalid address as a source address,
it is incorrect to assume that addresses not assigned to the interface
(`idx == -1` in the respective piece of code) are invalid: Other than
classic forwarding via a FIB, forwarded packets utilizing a IPv6
routing header will pass this check, like any other packet sent by this
node. The source address for these is not on the given node, so e.g.
source routing is not possible at the moment.
The IPv6 (extension) headers of the first fragment received are re-used
for the reassembled packet, so when receiving a subsequent packet we
need to distinguish, if we just want to release the payload or all of
the packet after the packet data was added to the reassembly buffer.
Due to some changes to the minimal forwarding draft and in preparation
for Selective Fragment Recovery some changes to the VRB API were
needed. Now the index of a VRB entry is only (L2 src, tag) not as
before (L2 src, L2 dst, length, tag).
I know that the current `rbuf_base` causes waste, as all the fields not
used by the new index are effectively not used by the VRB. I'd like to
fix that however in a later change, since that also requires some
modifications of the classic reassembly buffer, and thus would
complicate the review and testing of the change.
Sources for the index change:
- https://tools.ietf.org/html/draft-ietf-6lo-minimal-fragment-04#section-1
- https://mailarchive.ietf.org/arch/browse/6lo/?gbt=1&index=DLCTxC2X4bRNtYPHhtEkavMWlz4
before this commit the src address was checked for multicast, but the dst address should be checked. Therefore udp multicast packets would be flooded back to the src as ICMPv6 error, as not all nodes had a UDP receiver registered.
If an address was pre-configured by the upper layer its validity is
currently ignored. It is neither checked if the address is on the
interface at all nor is it checked if it is valid.
This change provides a fix for that by checking both facts.
When reworking the reception of IPv6 packets I reset a previously set
`ipv6` snip as follows when the IPv6 extension handler returns a
packet (see first hunk of this commit):
```C
ipv6 = pkt->next->next
```
With `gnrc_ipv6_ext` this makes *somewhat* sense, `pkt->next` was
previously equal to `ipv6` and after the function call `pkt->next`
is the marked extension header, while `pkt->next->next` is the IPv6
header. However, since `ipv6` is already write-protected i.e.
`ipv6->users == 1` (see ll. 665-675), any additional call of
`gnrc_pktbuf_start_write()` [won't][start-write-doc] duplicate the
packet. In fact, the only `gnrc_pktbuf_start_write()` in
`gnrc_ipv6_ext` is used to send the *result* to the subscribers of that
extension header type, leaving the original packet unchanged for the
caller. As such `ipv6` remains the pointer to the IPv6 header whether
we set it in the line above or not. So we actually don't need that
line.
However, the extension header handling also returns a packet when
`gnrc_ipv6_ext` is not compiled in. In that case it is just a dummy
define that returns the packet you give provide it which means that
this still holds true: `pkt->next == ipv6`.
So setting `ipv6` in this case is actually harmful, as `ipv6` now
points to the NETIF header [following the IPv6 header][pkt-structure]
in the packet and this causes the `user` counter of that NETIF header
`hdr` to be decremented if `hdr->users > 1` in the write-protection I
removed in hunk 2 of this commit:
```C
/* pkt might not be writable yet, if header was given above */
ipv6 = gnrc_pktbuf_start_write(ipv6);
if (ipv6 == NULL) {
DEBUG("ipv6: unable to get write access to packet: dropping it\n");
gnrc_pktbuf_release(pkt);
return;
}
```
But as we already established, `ipv6->users` is already 1, so we don't
actually need the write protection here either.
Since the packet stays unchanged after the `ipv6` snip, we also don't
need to re-search for `netif_hdr` after the other two lines are
removed.
[start-write-doc]: https://doc.riot-os.org/group__net__gnrc__pktbuf.html#ga640418467294ae3d408c109ab27bd617
[pkt-structure]: https://doc.riot-os.org/group__net__gnrc__pkt.html#ga278e783e56a5ee6f1bd7b81077ed82a7
The `addr` parameter of the NIB's `_handle_dad()` function can come
from anywhere (e.g. in the fallback to classic SLAAC the destination
address of the IP header is used), so putting that pointer in a timer
is not a good idea. Instead we use the version of the address that is
stored within the interface.
`_demux()` might change `pkt->data` in all kind of ways (moving it due
to `gnrc_pktbuf_mark()`, though unlikely; releasing it, because e.g. it
starts with a fragment header that marks a fragmented packet containing
only one fragment, etc.) so accessing the pointer *after* calling
`_demux()` is somewhat playing with fire. This change avoids this by
storing the value of `ext_hdr->nh` (all we are interested in here) in a
temporary variable that then is used to set the out-parameter `nh`.
`protnum` needs to be unchanged before the call to `_demux()` as it was
set by the previous iteration and determines what extension header
actually is handled.
If the interface's link-layer doesn't use link-layer addresses it
obviously doesn't make sense to auto-configure an IPv6 address from it.
Moreover, I think the address `fe80::` is actual illegal, but I
couldn't find any references for it.