1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00

mtd_spi_nor: MTD interface driver for SPI NOR flash memory

This is a generic SPI NOR flash driver which can be used with many
different flash chips.
This commit is contained in:
Joakim Nohlgård 2016-07-15 10:40:56 +02:00 committed by Vincent Dupont
parent 76bae4b111
commit 9313d8ec67
5 changed files with 704 additions and 0 deletions

View File

@ -218,3 +218,8 @@ endif
ifneq (,$(filter feetech,$(USEMODULE)))
USEMODULE += uart_half_duplex
endif
ifneq (,$(filter mtd_spi_nor,$(USEMODULE)))
USEMODULE += mtd
FEATURES_REQUIRED += periph_spi
endif

View File

@ -0,0 +1,148 @@
/*
* Copyright (C) 2016 Eistec AB
* 2017 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup drivers_mtd_spi_nor Serial NOR flash
* @ingroup drivers_storage
* @brief Driver for serial NOR flash memory technology devices attached via SPI
*
* @{
*
* @file
* @brief Interface definition for the serial flash memory driver
*
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Vincent Dupont <vincent@otakeys.com>
*/
#ifndef MTD_SPI_NOR_H_
#define MTD_SPI_NOR_H_
#include <stdint.h>
#include "periph_conf.h"
#include "periph/spi.h"
#include "periph/gpio.h"
#include "mtd.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @brief SPI NOR flash opcode table
*/
typedef struct {
uint8_t rdid; /**< Read identification (JEDEC ID) */
uint8_t wren; /**< Write enable */
uint8_t rdsr; /**< Read status register */
uint8_t wrsr; /**< Write status register */
uint8_t read; /**< Read data bytes, 3 byte address */
uint8_t read_fast; /**< Read data bytes, 3 byte address, at higher speed */
uint8_t page_program; /**< Page program */
uint8_t sector_erase; /**< Block erase 4 KiB */
uint8_t block_erase_32k; /**< 32KiB block erase */
uint8_t block_erase; /**< Block erase (usually 64 KiB) */
uint8_t chip_erase; /**< Chip erase */
uint8_t sleep; /**< Deep power down */
uint8_t wake; /**< Release from deep power down */
/* TODO: enter 4 byte address mode for large memories */
} mtd_spi_nor_opcode_t;
/**
* @brief Internal representation of JEDEC memory ID codes.
*
* @see http://www.jedec.org/standards-documents/results/jep106
*/
typedef struct __attribute__((packed)) {
uint8_t bank; /**< Manufacturer ID bank number, 1 through 10, see JEP106 */
uint8_t manuf; /**< Manufacturer ID, 1 byte */
uint8_t device[2]; /**< Device ID, 2 bytes */
} mtd_jedec_id_t;
/**
* @brief Byte to signal increment bank number when reading manufacturer ID
*
* @see http://www.jedec.org/standards-documents/results/jep106
*/
#define JEDEC_NEXT_BANK (0x7f)
/**
* @brief Flag to set when the device support 4KiB sector erase (sector_erase opcode)
*/
#define SPI_NOR_F_SECT_4K (1)
/**
* @brief Flag to set when the device support 32KiB block erase (block_erase_32k opcode)
*/
#define SPI_NOR_F_SECT_32K (2)
/**
* @brief Device descriptor for serial flash memory devices
*
* This is an extension of the @c mtd_dev_t struct
*/
typedef struct {
mtd_dev_t base; /**< inherit from mtd_dev_t object */
const mtd_spi_nor_opcode_t *opcode; /**< Opcode table for the device */
spi_t spi; /**< SPI bus the device is connected to */
gpio_t cs; /**< CS pin GPIO handle */
spi_mode_t mode; /**< SPI mode */
spi_clk_t clk; /**< SPI clock */
uint16_t flag; /**< Config flags */
mtd_jedec_id_t jedec_id; /**< JEDEC ID of the chip */
/**
* @brief bitmask to corresponding to the page address
*
* Computed by mtd_spi_nor_init, no need to touch outside the driver.
*/
uint32_t page_addr_mask;
/**
* @brief bitmask to corresponding to the sector address
*
* Computed by mtd_spi_nor_init, no need to touch outside the driver.
*/
uint32_t sec_addr_mask;
uint8_t addr_width; /**< Number of bytes in addresses, usually 3 for small devices */
/**
* @brief number of right shifts to get the address to the start of the page
*
* Computed by mtd_spi_nor_init, no need to touch outside the driver.
*/
uint8_t page_addr_shift;
/**
* @brief number of right shifts to get the address to the start of the sector
*
* Computed by mtd_spi_nor_init, no need to touch outside the driver.
*/
uint8_t sec_addr_shift;
} mtd_spi_nor_t;
/**
* @brief NOR flash SPI MTD device operations table
*/
extern const mtd_desc_t mtd_spi_nor_driver;
/* Available opcode tables for known devices */
/* Defined in mtd_spi_nor_configs.c */
/**
* @brief Default command opcodes
*
* The numbers were taken from Micron M25P16, but the same opcodes can
* be found in Macronix MX25L25735E, and multiple other data sheets for
* different devices, as well as in the Linux kernel, so they seem quite
* sensible for default values. */
extern const mtd_spi_nor_opcode_t mtd_spi_nor_opcode_default;
#ifdef __cplusplus
}
#endif
#endif /* MTD_SPI_NOR_H_ */
/** @} */

View File

@ -0,0 +1 @@
include $(RIOTBASE)/Makefile.base

View File

@ -0,0 +1,505 @@
/*
* Copyright (C) 2016 Eistec AB
* 2017 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
*/
/**
* @ingroup drivers_mtd_spi_nor
* @{
*
* @file
* @brief Driver for serial flash memory attached to SPI
*
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
* @author Vincent Dupont <vincent@otakeys.com>
*
* @}
*/
#include <stdint.h>
#include <errno.h>
#include "mtd.h"
#if MODULE_XTIMER
#include "xtimer.h"
#include "timex.h"
#else
#include "thread.h"
#endif
#include "byteorder.h"
#include "mtd_spi_nor.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define ENABLE_TRACE (0)
#if ENABLE_TRACE
#define TRACE(...) DEBUG(__VA_ARGS__)
#else
#define TRACE(...)
#endif
#ifndef MTD_SPI_NOR_WRITE_WAIT_US
#define MTD_SPI_NOR_WRITE_WAIT_US (50 * US_PER_MS)
#endif
static int mtd_spi_nor_init(mtd_dev_t *mtd);
static int mtd_spi_nor_read(mtd_dev_t *mtd, void *dest, uint32_t addr, uint32_t size);
static int mtd_spi_nor_write(mtd_dev_t *mtd, const void *src, uint32_t addr, uint32_t size);
static int mtd_spi_nor_erase(mtd_dev_t *mtd, uint32_t addr, uint32_t size);
static int mtd_spi_nor_power(mtd_dev_t *mtd, enum mtd_power_state power);
const mtd_desc_t mtd_spi_nor_driver = {
.init = mtd_spi_nor_init,
.read = mtd_spi_nor_read,
.write = mtd_spi_nor_write,
.erase = mtd_spi_nor_erase,
.power = mtd_spi_nor_power,
};
/**
* @internal
* @brief Send command opcode followed by address, followed by a read to buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[in] addr address (big endian)
* @param[out] dest read buffer
* @param[in] count number of bytes to read after the address has been sent
*/
static void mtd_spi_cmd_addr_read(mtd_spi_nor_t *dev, uint8_t opcode,
be_uint32_t addr, void* dest, uint32_t count)
{
TRACE("mtd_spi_cmd_addr_read: %p, %02x, (%02x %02x %02x %02x), %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, addr.u8[0], addr.u8[1], addr.u8[2],
addr.u8[3], dest, count);
uint8_t *addr_buf = &addr.u8[4 - dev->addr_width];
if (ENABLE_TRACE) {
TRACE("mtd_spi_cmd_addr_read: addr:");
for (unsigned int i = 0; i < dev->addr_width; ++i)
{
TRACE(" %02x", addr_buf[i]);
}
TRACE("\n");
}
/* Acquire exclusive access to the bus. */
spi_acquire(dev->spi, dev->cs, dev->mode, dev->clk);
do {
/* Send opcode followed by address */
spi_transfer_byte(dev->spi, dev->cs, true, opcode);
spi_transfer_bytes(dev->spi, dev->cs, true, (char *)addr_buf, NULL, dev->addr_width);
/* Read data */
spi_transfer_bytes(dev->spi, dev->cs, false, NULL, dest, count);
} while(0);
/* Release the bus for other threads. */
spi_release(dev->spi);
}
/**
* @internal
* @brief Send command opcode followed by address, followed by a write from buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[in] addr address (big endian)
* @param[out] src write buffer
* @param[in] count number of bytes to write after the opcode has been sent
*/
static void mtd_spi_cmd_addr_write(mtd_spi_nor_t *dev, uint8_t opcode,
be_uint32_t addr, const void* src, uint32_t count)
{
TRACE("mtd_spi_cmd_addr_write: %p, %02x, (%02x %02x %02x %02x), %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, addr.u8[0], addr.u8[1], addr.u8[2],
addr.u8[3], src, count);
uint8_t *addr_buf = &addr.u8[4 - dev->addr_width];
if (ENABLE_TRACE) {
TRACE("mtd_spi_cmd_addr_write: addr:");
for (unsigned int i = 0; i < dev->addr_width; ++i)
{
TRACE(" %02x", addr_buf[i]);
}
TRACE("\n");
}
/* Acquire exclusive access to the bus. */
spi_acquire(dev->spi, dev->cs, dev->mode, dev->clk);
do {
/* Send opcode followed by address */
spi_transfer_byte(dev->spi, dev->cs, true, opcode);
bool cont = (count > 0); /* only keep CS asserted when there is data that follows */
spi_transfer_bytes(dev->spi, dev->cs, cont, (char *)addr_buf, NULL, dev->addr_width);
/* Write data */
if (cont) {
spi_transfer_bytes(dev->spi, dev->cs, false, (void *)src, NULL, count);
}
} while(0);
/* Release the bus for other threads. */
spi_release(dev->spi);
}
/**
* @internal
* @brief Send command opcode followed by a read to buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[out] dest read buffer
* @param[in] count number of bytes to write after the opcode has been sent
*/
static void mtd_spi_cmd_read(mtd_spi_nor_t *dev, uint8_t opcode, void* dest, uint32_t count)
{
TRACE("mtd_spi_cmd_read: %p, %02x, %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, dest, count);
/* Acquire exclusive access to the bus. */
spi_acquire(dev->spi, dev->cs, dev->mode, dev->clk);
spi_transfer_regs(dev->spi, dev->cs, opcode, NULL, dest, count);
/* Release the bus for other threads. */
spi_release(dev->spi);
}
/**
* @internal
* @brief Send command opcode followed by a write from buffer
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
* @param[out] src write buffer
* @param[in] count number of bytes to write after the opcode has been sent
*/
static void __attribute__((unused)) mtd_spi_cmd_write(mtd_spi_nor_t *dev, uint8_t opcode, const void* src, uint32_t count)
{
TRACE("mtd_spi_cmd_write: %p, %02x, %p, %" PRIu32 "\n",
(void *)dev, (unsigned int)opcode, src, count);
/* Acquire exclusive access to the bus. */
spi_acquire(dev->spi, dev->cs, dev->mode, dev->clk);
spi_transfer_regs(dev->spi, dev->cs, opcode, (void *)src, NULL, count);
/* Release the bus for other threads. */
spi_release(dev->spi);
}
/**
* @internal
* @brief Send command opcode
*
* @param[in] dev pointer to device descriptor
* @param[in] opcode command opcode
*/
static void mtd_spi_cmd(mtd_spi_nor_t *dev, uint8_t opcode)
{
TRACE("mtd_spi_cmd: %p, %02x\n",
(void *)dev, (unsigned int)opcode);
/* Acquire exclusive access to the bus. */
spi_acquire(dev->spi, dev->cs, dev->mode, dev->clk);
spi_transfer_byte(dev->spi, dev->cs, false, opcode);
/* Release the bus for other threads. */
spi_release(dev->spi);
}
/**
* @internal
* @brief Compute 8 bit parity
*/
static inline uint8_t parity8(uint8_t x)
{
/* Taken from http://stackoverflow.com/a/21618038/1805713 */
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
return (x & 1);
}
/**
* @internal
* @brief Read JEDEC ID
*/
static int mtd_spi_read_jedec_id(mtd_spi_nor_t *dev, mtd_jedec_id_t *out)
{
/* not using above read functions because of variable length rdid response */
int status = 0;
mtd_jedec_id_t jedec;
DEBUG("mtd_spi_read_jedec_id: rdid=0x%02x\n", (unsigned int)dev->opcode->rdid);
/* Acquire exclusive access to the bus. */
spi_acquire(dev->spi, dev->cs, dev->mode, dev->clk);
/* Send opcode */
spi_transfer_byte(dev->spi, dev->cs, true, dev->opcode->rdid);
/* Read manufacturer ID */
jedec.bank = 1;
while (status == 0) {
jedec.manuf = spi_transfer_byte(dev->spi, dev->cs, true, 0);
if (jedec.manuf == JEDEC_NEXT_BANK) {
/* next bank, see JEP106 */
DEBUG("mtd_spi_read_jedec_id: manuf bank incr\n");
++jedec.bank;
continue;
}
if (parity8(jedec.manuf) == 0) {
/* saw even parity, we expected odd parity => parity error */
DEBUG("mtd_spi_read_jedec_id: Parity error (0x%02x)\n", (unsigned int)jedec.manuf);
status = -2;
break;
}
else {
/* all OK! */
break;
}
}
DEBUG("mtd_spi_read_jedec_id: bank=%u manuf=0x%02x\n", (unsigned int)jedec.bank,
(unsigned int)jedec.manuf);
/* Read device ID */
if (status == 0) {
spi_transfer_bytes(dev->spi, dev->cs, false, NULL, (char *)&jedec.device[0], sizeof(jedec.device));
}
DEBUG("mtd_spi_read_jedec_id: device=0x%02x, 0x%02x\n",
(unsigned int)jedec.device[0], (unsigned int)jedec.device[1]);
if (status == 0) {
*out = jedec;
}
/* Release the bus for other threads. */
spi_release(dev->spi);
return status;
}
static inline void wait_for_write_complete(mtd_spi_nor_t *dev)
{
do {
uint8_t status;
mtd_spi_cmd_read(dev, dev->opcode->rdsr, &status, sizeof(status));
TRACE("mtd_spi_nor: wait device status = 0x%02x\n", (unsigned int)status);
if ((status & 1) == 0) { /* TODO magic number */
break;
}
#if MODULE_XTIMER
xtimer_usleep(MTD_SPI_NOR_WRITE_WAIT_US);
#else
thread_yield();
#endif
} while (1);
}
static int mtd_spi_nor_init(mtd_dev_t *mtd)
{
DEBUG("mtd_spi_nor_init: %p\n", (void *)mtd);
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
DEBUG("mtd_spi_nor_init: -> spi: %lx, cs: %lx, opcodes: %p\n",
(unsigned long)dev->spi, (unsigned long)dev->cs, (void *)dev->opcode);
DEBUG("mtd_spi_nor_init: %" PRIu32 " bytes "
"(%" PRIu32 " sectors, %" PRIu32 " bytes/sector, "
"%" PRIu32 " pages, "
"%" PRIu32 " pages/sector, %" PRIu32 " bytes/page)\n",
mtd->pages_per_sector * mtd->sector_count * mtd->page_size,
mtd->sector_count, mtd->pages_per_sector * mtd->page_size,
mtd->pages_per_sector * mtd->sector_count,
mtd->pages_per_sector, mtd->page_size);
DEBUG("mtd_spi_nor_init: Using %u byte addresses\n", dev->addr_width);
if (dev->addr_width == 0) {
return -EINVAL;
}
/* CS */
DEBUG("mtd_spi_nor_init: CS init\n");
spi_init_cs(dev->spi, dev->cs);
int res = mtd_spi_read_jedec_id(dev, &dev->jedec_id);
if (res < 0) {
return -EIO;
}
DEBUG("mtd_spi_nor_init: Found chip with ID: (%d, 0x%02x, 0x%02x, 0x%02x)\n",
dev->jedec_id.bank, dev->jedec_id.manuf, dev->jedec_id.device[0], dev->jedec_id.device[1]);
uint8_t status;
mtd_spi_cmd_read(dev, dev->opcode->rdsr, &status, sizeof(status));
DEBUG("mtd_spi_nor_init: device status = 0x%02x\n", (unsigned int)status);
/* check whether page size and sector size are powers of two (most chips' are)
* and compute the number of shifts needed to get the page and sector addresses
* from a byte address */
uint8_t shift = 0;
uint32_t page_size = mtd->page_size;
uint32_t mask = 0;
if ((page_size & (page_size - 1)) == 0) {
while ((page_size >> shift) > 1) {
++shift;
}
mask = (UINT32_MAX << shift);
}
dev->page_addr_mask = mask;
dev->page_addr_shift = shift;
DEBUG("mtd_spi_nor_init: page_addr_mask = 0x%08" PRIx32 ", page_addr_shift = %u\n",
mask, (unsigned int)shift);
mask = 0;
shift = 0;
uint32_t sector_size = mtd->page_size * mtd->pages_per_sector;
if ((sector_size & (sector_size - 1)) == 0) {
while ((sector_size >> shift) > 1) {
++shift;
}
mask = (UINT32_MAX << shift);
}
dev->sec_addr_mask = mask;
dev->sec_addr_shift = shift;
DEBUG("mtd_spi_nor_init: sec_addr_mask = 0x%08" PRIx32 ", sec_addr_shift = %u\n",
mask, (unsigned int)shift);
return 0;
}
static int mtd_spi_nor_read(mtd_dev_t *mtd, void *dest, uint32_t addr, uint32_t size)
{
DEBUG("mtd_spi_nor_read: %p, %p, 0x%" PRIx32 ", 0x%" PRIx32 "\n",
(void *)mtd, dest, addr, size);
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
size_t chipsize = mtd->page_size * mtd->pages_per_sector * mtd->sector_count;
if (addr > chipsize) {
return -EOVERFLOW;
}
if (size > mtd->page_size) {
size = mtd->page_size;
}
if ((addr + size) > chipsize) {
size = chipsize - addr;
}
uint32_t page_addr_mask = dev->page_addr_mask;
if ((addr & page_addr_mask) != ((addr + size - 1) & page_addr_mask)) {
/* Reads across page boundaries must be split */
size = mtd->page_size - (addr & ~(page_addr_mask));
}
if (size == 0) {
return 0;
}
be_uint32_t addr_be = byteorder_htonl(addr);
mtd_spi_cmd_addr_read(dev, dev->opcode->read, addr_be, dest, size);
return size;
}
static int mtd_spi_nor_write(mtd_dev_t *mtd, const void *src, uint32_t addr, uint32_t size)
{
uint32_t total_size = mtd->page_size * mtd->pages_per_sector * mtd->sector_count;
DEBUG("mtd_spi_nor_write: %p, %p, 0x%" PRIx32 ", 0x%" PRIx32 "\n",
(void *)mtd, src, addr, size);
if (size == 0) {
return 0;
}
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
if (size > mtd->page_size) {
DEBUG("mtd_spi_nor_write: ERR: page program >1 page (%" PRIu32 ")!\n", mtd->page_size);
return -EOVERFLOW;
}
if (dev->page_addr_mask &&
((addr & dev->page_addr_mask) != ((addr + size - 1) & dev->page_addr_mask))) {
DEBUG("mtd_spi_nor_write: ERR: page program spans page boundary!\n");
return -EOVERFLOW;
}
if (addr + size > total_size) {
return -EOVERFLOW;
}
be_uint32_t addr_be = byteorder_htonl(addr);
/* write enable */
mtd_spi_cmd(dev, dev->opcode->wren);
/* Page program */
mtd_spi_cmd_addr_write(dev, dev->opcode->page_program, addr_be, src, size);
/* waiting for the command to complete before returning */
wait_for_write_complete(dev);
return size;
}
static int mtd_spi_nor_erase(mtd_dev_t *mtd, uint32_t addr, uint32_t size)
{
DEBUG("mtd_spi_nor_erase: %p, 0x%" PRIx32 ", 0x%" PRIx32 "\n",
(void *)mtd, addr, size);
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
uint32_t sector_size = mtd->page_size * mtd->pages_per_sector;
uint32_t total_size = sector_size * mtd->sector_count;
if (dev->sec_addr_mask &&
((addr & ~dev->sec_addr_mask) != 0)) {
/* This is not a requirement in hardware, but it helps in catching
* software bugs (the erase-all-your-files kind) */
DEBUG("addr = %" PRIx32 " ~dev->erase_addr_mask = %" PRIx32 "", addr, ~dev->sec_addr_mask);
DEBUG("mtd_spi_nor_erase: ERR: erase addr not aligned on %" PRIu32 " byte boundary.\n",
sector_size);
return -EOVERFLOW;
}
if (addr + size > total_size) {
return -EOVERFLOW;
}
be_uint32_t addr_be = byteorder_htonl(addr);
/* write enable */
mtd_spi_cmd(dev, dev->opcode->wren);
if (size == total_size) {
mtd_spi_cmd_addr_write(dev, dev->opcode->chip_erase, addr_be, NULL, 0);
}
else if ((dev->flag & SPI_NOR_F_SECT_4K) && size == 4096) {
/* 4 KiO sectors can be erased with sector erase command */
mtd_spi_cmd_addr_write(dev, dev->opcode->sector_erase, addr_be, NULL, 0);
}
else if ((dev->flag & SPI_NOR_F_SECT_32K) && size == 32768) {
/* 32 KiO sectors can be erased with sector erase command */
mtd_spi_cmd_addr_write(dev, dev->opcode->block_erase_32k, addr_be, NULL, 0);
}
else if (size % sector_size != 0) {
return -EOVERFLOW;
}
else {
for (size_t i = 0; i < size / sector_size; i++) {
mtd_spi_cmd_addr_write(dev, dev->opcode->block_erase, addr_be, NULL, 0);
addr += sector_size;
addr_be = byteorder_htonl(addr);
}
}
/* waiting for the command to complete before returning */
wait_for_write_complete(dev);
return 0;
}
static int mtd_spi_nor_power(mtd_dev_t *mtd, enum mtd_power_state power)
{
mtd_spi_nor_t *dev = (mtd_spi_nor_t *)mtd;
switch (power) {
case MTD_POWER_UP:
mtd_spi_cmd(dev, dev->opcode->wake);
break;
case MTD_POWER_DOWN:
mtd_spi_cmd(dev, dev->opcode->sleep);
break;
}
return 0;
}

View File

@ -0,0 +1,45 @@
/*
* Copyright (C) 2016 Eistec AB
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
*/
/**
* @ingroup drivers_mtd_spi_nor
* @{
*
* @file
* @brief Configurations for some known serial flash memory devices
*
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*/
#include <stdint.h>
#include "mtd_spi_nor.h"
/* Define opcode tables for SPI NOR flash memory devices here. */
/* Linker garbage collection (gcc -fdata-sections -Wl,--gc-sections) should ensure
* that only the tables that are actually used by the application will take up
* space in the .rodata section in program ROM. */
const mtd_spi_nor_opcode_t mtd_spi_nor_opcode_default = {
.rdid = 0x9f,
.wren = 0x06,
.rdsr = 0x05,
.wrsr = 0x01,
.read = 0x03,
.read_fast = 0x0b,
.page_program = 0x02,
.sector_erase = 0x20,
.block_erase_32k = 0x52,
.block_erase = 0xd8,
.chip_erase = 0xc7,
.sleep = 0xb9,
.wake = 0xab,
};
/** @} */