1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/at86rf215/at86rf215_internal.c

210 lines
5.9 KiB
C
Raw Normal View History

/*
* Copyright (C) 2019 ML!PA Consulting GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_at86rf215
* @{
*
* @file
* @brief Low-Level functions for the AT86RF215 driver
*
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
* @}
*/
#include "periph/spi.h"
#include "periph/gpio.h"
#include "xtimer.h"
#include "at86rf215_internal.h"
#include <string.h>
#define SPIDEV (dev->params.spi)
#define CSPIN (dev->params.cs_pin)
static inline void getbus(const at86rf215_t *dev)
{
spi_acquire(SPIDEV, CSPIN, SPI_MODE_0, dev->params.spi_clk);
}
/* only to be used by at86rf215_hardware_reset()
can't use normal at86rf215_reg_read() because
we already hold the lock */
static inline uint8_t _get_reg_with_lock(at86rf215_t *dev, uint16_t r)
{
uint16_t reg = htons(r | FLAG_READ);
spi_transfer_bytes(SPIDEV, CSPIN, true, &reg, NULL, sizeof(reg));
return spi_transfer_byte(SPIDEV, CSPIN, false, 0);
}
int at86rf215_hardware_reset(at86rf215_t *dev)
{
/* prevent access during reset */
getbus(dev);
/* trigger hardware reset */
gpio_clear(dev->params.reset_pin);
xtimer_usleep(CONFIG_AT86RF215_RESET_PULSE_WIDTH_US);
gpio_set(dev->params.reset_pin);
xtimer_usleep(AT86RF215_RESET_DELAY_US);
/* While the device is in RESET / DEEP SLEEP, all registers
but STATE will read 0xFF.
WAKEUP IRQ signals that the device is ready. */
uint8_t state = 0;
uint8_t tries = 255;
while (--tries && (state == 0xFF || !(state & IRQS_WAKEUP_MASK))) {
state = _get_reg_with_lock(dev, dev->RF->RG_IRQS);
}
spi_release(SPIDEV);
/* no device connected */
if (!tries) {
return -ENODEV;
}
/* enable battery monitor */
if (IS_ACTIVE(MODULE_AT86RF215_BATMON)) {
at86rf215_enable_batmon(dev, CONFIG_AT86RF215_BATMON_THRESHOLD);
}
/* clear interrupts */
at86rf215_reg_read(dev, RG_RF09_IRQS);
at86rf215_reg_read(dev, RG_RF24_IRQS);
at86rf215_reg_read(dev, RG_BBC0_IRQS);
at86rf215_reg_read(dev, RG_BBC1_IRQS);
return 0;
}
void at86rf215_reg_write(const at86rf215_t *dev, uint16_t reg, uint8_t value)
{
reg = htons(reg | FLAG_WRITE);
getbus(dev);
spi_transfer_bytes(SPIDEV, CSPIN, true, &reg, NULL, sizeof(reg));
spi_transfer_byte(SPIDEV, CSPIN, false, value);
spi_release(SPIDEV);
}
void at86rf215_reg_write_bytes(const at86rf215_t *dev, uint16_t reg, const void *data, size_t len)
{
reg = htons(reg | FLAG_WRITE);
getbus(dev);
spi_transfer_bytes(SPIDEV, CSPIN, true, &reg, NULL, sizeof(reg));
spi_transfer_bytes(SPIDEV, CSPIN, false, data, NULL, len);
spi_release(SPIDEV);
}
uint8_t at86rf215_reg_read(const at86rf215_t *dev, uint16_t reg)
{
uint8_t val;
reg = htons(reg | FLAG_READ);
getbus(dev);
spi_transfer_bytes(SPIDEV, CSPIN, true, &reg, NULL, sizeof(reg));
val = spi_transfer_byte(SPIDEV, CSPIN, false, 0);
spi_release(SPIDEV);
return val;
}
void at86rf215_reg_read_bytes(const at86rf215_t *dev, uint16_t reg, void *data, size_t len)
{
reg = htons(reg | FLAG_READ);
getbus(dev);
spi_transfer_bytes(SPIDEV, CSPIN, true, &reg, NULL, sizeof(reg));
spi_transfer_bytes(SPIDEV, CSPIN, false, NULL, data, len);
spi_release(SPIDEV);
}
void at86rf215_filter_ack(at86rf215_t *dev, bool on)
{
/* only listen for ACK frames */
uint8_t val = on ? (1 << IEEE802154_FCF_TYPE_ACK)
: (1 << IEEE802154_FCF_TYPE_BEACON)
| (1 << IEEE802154_FCF_TYPE_DATA)
| (1 << IEEE802154_FCF_TYPE_MACCMD);
at86rf215_reg_write(dev, dev->BBC->RG_AFFTM, val);
}
void at86rf215_get_random(at86rf215_t *dev, void *data, size_t len)
{
/* store previous PHY control state */
uint8_t state_pc = at86rf215_reg_read(dev, dev->BBC->RG_PC);
/* disable baseband processor */
at86rf215_reg_write(dev, dev->BBC->RG_PC, state_pc & ~PC_BBEN_MASK);
/* store previous RX bandwidth settings */
uint8_t rxbwc = at86rf215_reg_read(dev, dev->RF->RG_RXBWC);
/* The analog frontend of the radio must be configured to the
widest filter bandwidth; The bit RXBWC.IFS must be set to 1 */
at86rf215_reg_write(dev, dev->RF->RG_RXBWC, 0x1B);
uint8_t *data8 = data;
while (len--) {
*data8++ = at86rf215_reg_read(dev, dev->RF->RG_RNDV);
}
/* restore RX bandwidth settings */
at86rf215_reg_write(dev, dev->RF->RG_RXBWC, rxbwc);
/* restore PHY control settings */
at86rf215_reg_write(dev, dev->BBC->RG_PC, state_pc);
}
uint16_t at86rf215_chan_valid(at86rf215_t *dev, uint16_t chan)
{
if (is_subGHz(dev)) {
if (chan >= dev->num_chans) {
return dev->num_chans - 1;
}
} else {
if (chan < IEEE802154_CHANNEL_MIN) {
return IEEE802154_CHANNEL_MIN;
} else if (chan >= IEEE802154_CHANNEL_MIN + dev->num_chans) {
return IEEE802154_CHANNEL_MIN + dev->num_chans - 1;
}
}
return chan;
}
const char* at86rf215_hw_state2a(uint8_t state)
{
switch (state) {
case RF_STATE_TRXOFF: return "TRXOFF";
case RF_STATE_TXPREP: return "TXPREP";
case RF_STATE_TX: return "TX";
case RF_STATE_RX: return "RX";
case RF_STATE_TRANSITION: return "TRANSITION";
case RF_STATE_RESET: return "RESET";
default: return "invalid";
}
}
const char* at86rf215_sw_state2a(at86rf215_state_t state) {
switch (state) {
case AT86RF215_STATE_OFF: return "OFF";
case AT86RF215_STATE_IDLE: return "IDLE";
case AT86RF215_STATE_RX_SEND_ACK: return "RX (sending ACK)";
case AT86RF215_STATE_TX: return "TX";
case AT86RF215_STATE_TX_WAIT_ACK: return "TX (wait for ACK)";
case AT86RF215_STATE_SLEEP: return "SLEEP";
default: return "invalid";
}
}