Some hardware designers like to include filtering capacitors into reset
lines in order to protect against ESD or other pulses.
This increases the raise time of the reset signal. To still reach the
required 16 µs reset pulse width, we thus have to increase the reset pulse
width via board config.
When the radio is in DEEP SLEEP, reading the state register will return 0.
This makes the reset routine abort early even though the device is connected
and still waking up.
Instead, just add a timeout to the polling of the WAKEUP IRQ bit.
In practise it has shown that the loop will be taken two times on 'normal'
reset and four times when the radio was in DEEP SLEEP.
Polling 255 times sure does not hurt.
To reproduce the issue, put both interfaces into SLEEP mode,
then reboot the module:
ifconfig 7 set state sleep
ifconfig 8 set state sleep
reboot
This adds a driver for the SPI based AT86RF215 transceiver.
The chip supports the IEEE Std 802.15.4-2015 and IEEE Std 802.15.4g-2012 standard.
This driver supports two versions of the chip:
- AT86RF215: dual sub-GHz & 2.4 GHz radio & baseband
- AT86RF215M: sub-GHz radio & baseband only
Both radios support the following PHY modes:
- MR-FSK
- MR-OFDM
- MR-O-QPKS
- O-QPSK (legacy)
The driver currently only implements support for legacy O-QPSK.
To use both interfaces, add
GNRC_NETIF_NUMOF := 2
to your Makefile.
The transceiver is able to send frames of up to 2047 bytes according to
IEEE 802.15.4g-2012 when operating in non-legacy mode.
Known issues:
- [ ] dBm setting values are bogus
- [ ] Channel spacing for sub-GHz MR-O-QPSK might be wrong
- [ ] TX/RX stress test will lock up the driver on openmote-b