1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/boards/sodaq-autonomo/include/periph_conf.h

233 lines
6.4 KiB
C
Raw Normal View History

/*
* Copyright (C) 2016 Kees Bakker, SODAQ
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup boards_sodaq-autonomo
* @{
*
* @file
* @brief Configuration of CPU peripherals for the SODAQ Autonomo board
*
* @author Kees Bakker <kees@sodaq.com>
*/
#ifndef PERIPH_CONF_H_
#define PERIPH_CONF_H_
#include <stdint.h>
#include "cpu.h"
#include "periph_cpu.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief External oscillator and clock configuration
*
* For selection of the used CORECLOCK, we have implemented two choices:
*
* - usage of the PLL fed by the internal 8MHz oscillator divided by 8
* - usage of the internal 8MHz oscillator directly, divided by N if needed
*
*
* The PLL option allows for the usage of a wider frequency range and a more
* stable clock with less jitter. This is why we use this option as default.
*
* The target frequency is computed from the PLL multiplier and the PLL divisor.
* Use the following formula to compute your values:
*
* CORECLOCK = ((PLL_MUL + 1) * 1MHz) / PLL_DIV
*
* NOTE: The PLL circuit does not run with less than 32MHz while the maximum PLL
* frequency is 96MHz. So PLL_MULL must be between 31 and 95!
*
*
* The internal Oscillator used directly can lead to a slightly better power
* efficiency to the cost of a less stable clock. Use this option when you know
* what you are doing! The actual core frequency is adjusted as follows:
*
* CORECLOCK = 8MHz / DIV
*
* NOTE: A core clock frequency below 1MHz is not recommended
*
* @{
*/
#define CLOCK_USE_PLL (1)
#if CLOCK_USE_PLL
/* edit these values to adjust the PLL output frequency */
#define CLOCK_PLL_MUL (47U) /* must be >= 31 & <= 95 */
#define CLOCK_PLL_DIV (1U) /* adjust to your needs */
/* generate the actual used core clock frequency */
#define CLOCK_CORECLOCK (((CLOCK_PLL_MUL + 1) * 1000000U) / CLOCK_PLL_DIV)
#else
/* edit this value to your needs */
#define CLOCK_DIV (1U)
/* generate the actual core clock frequency */
#define CLOCK_CORECLOCK (8000000 / CLOCK_DIV)
#endif
/** @} */
/**
* @name Timer peripheral configuration
* @{
*/
#define TIMER_NUMOF (2U)
#define TIMER_0_EN 1
#define TIMER_1_EN 1
/* Timer 0 configuration */
#define TIMER_0_DEV TC3->COUNT16
#define TIMER_0_CHANNELS 2
#define TIMER_0_MAX_VALUE (0xffff)
#define TIMER_0_ISR isr_tc3
/* Timer 1 configuration */
#define TIMER_1_DEV TC4->COUNT32
#define TIMER_1_CHANNELS 2
#define TIMER_1_MAX_VALUE (0xffffffff)
#define TIMER_1_ISR isr_tc4
/** @} */
/**
* @name UART configuration
* @{
* See Table 6.1 of the SAM D21 Datasheet
*/
static const uart_conf_t uart_config[] = {
/* device, RX pin, TX pin, mux, RX pad, TX pad */
{&SERCOM0->USART, GPIO_PIN(PA,9), GPIO_PIN(PA,10), GPIO_MUX_C, SERCOM_RX_PAD_1, UART_TX_PAD_2},
{&SERCOM5->USART, GPIO_PIN(PB,31), GPIO_PIN(PB,30), GPIO_MUX_D, SERCOM_RX_PAD_1, UART_TX_RTS_CTS_PAD_0_2_3},
{&SERCOM4->USART, GPIO_PIN(PB,13), GPIO_PIN(PA,14), GPIO_MUX_C, SERCOM_RX_PAD_1, UART_TX_PAD_2},
{&SERCOM1->USART, GPIO_PIN(PA,17), GPIO_PIN(PA,18), GPIO_MUX_C, SERCOM_RX_PAD_1, UART_TX_PAD_2},
};
/* interrupt function name mapping */
#define UART_0_ISR isr_sercom0
#define UART_1_ISR isr_sercom5
#define UART_2_ISR isr_sercom4
#define UART_3_ISR isr_sercom1
#define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0]))
/** @} */
/**
* @name PWM configuration
* @{
*/
#define PWM_0_EN 1
#define PWM_1_EN 1
#define PWM_MAX_CHANNELS 3
/* for compatibility with test application */
#define PWM_0_CHANNELS PWM_MAX_CHANNELS
#define PWM_1_CHANNELS PWM_MAX_CHANNELS
/* PWM device configuration */
static const pwm_conf_t pwm_config[] = {
#if PWM_0_EN
{TCC1, {
/* GPIO pin, MUX value, TCC channel */
{ GPIO_PIN(PA, 6), GPIO_MUX_E, 0 },
{ GPIO_PIN(PA, 7), GPIO_MUX_E, 1 },
{ GPIO_UNDEF, (gpio_mux_t)0, 2 }
}},
#endif
#if PWM_1_EN
{TCC0, {
/* GPIO pin, MUX value, TCC channel */
{ GPIO_PIN(PA, 16), GPIO_MUX_F, 0 },
{ GPIO_PIN(PA, 18), GPIO_MUX_F, 2 },
{ GPIO_PIN(PA, 19), GPIO_MUX_F, 3 }
}}
#endif
};
/* number of devices that are actually defined */
#define PWM_NUMOF (2U)
/** @} */
/**
* @name SPI configuration
* @{
*/
#define SPI_NUMOF (1)
#define SPI_0_EN 1
#define SPI_1_EN 0
/* SPI0 */
#define SPI_0_DEV SERCOM3->SPI
#define SPI_IRQ_0 SERCOM3_IRQn
#define SPI_0_GCLK_ID SERCOM3_GCLK_ID_CORE
/* SPI 0 pin configuration */
#define SPI_0_SCLK GPIO_PIN(PA, 21)
#define SPI_0_SCLK_MUX GPIO_MUX_D
#define SPI_0_MISO GPIO_PIN(PA, 22)
#define SPI_0_MISO_MUX GPIO_MUX_C
#define SPI_0_MISO_PAD SERCOM_RX_PAD_0
#define SPI_0_MOSI GPIO_PIN(PA, 20)
#define SPI_0_MOSI_MUX GPIO_MUX_D
#define SPI_0_MOSI_PAD SPI_PAD_2_SCK_3
// How/where do we define SS?
#define SPI_0_SS GPIO_PIN(PA, 23)
/** @} */
/**
* @name I2C configuration
* @{
*/
#define I2C_NUMOF (1U)
#define I2C_0_EN 1
#define I2C_1_EN 0
#define I2C_2_EN 0
#define I2C_3_EN 0
#define I2C_IRQ_PRIO 1
#define I2C_0_DEV SERCOM2->I2CM
#define I2C_0_IRQ SERCOM2_IRQn
#define I2C_0_ISR isr_sercom2
/* I2C 0 GCLK */
#define I2C_0_GCLK_ID SERCOM2_GCLK_ID_CORE
#define I2C_0_GCLK_ID_SLOW SERCOM2_GCLK_ID_SLOW
/* I2C 0 pin configuration */
#define I2C_0_SDA GPIO_PIN(PA, 12)
#define I2C_0_SCL GPIO_PIN(PA, 13)
#define I2C_0_MUX GPIO_MUX_C
/**
* @name RTC configuration
* @{
*/
#define RTC_NUMOF (1U)
#define RTC_DEV RTC->MODE2
/** @} */
/**
* @name RTT configuration
* @{
*/
#define RTT_NUMOF (1U)
#define RTT_DEV RTC->MODE0
#define RTT_IRQ RTC_IRQn
#define RTT_IRQ_PRIO 10
#define RTT_ISR isr_rtc
#define RTT_MAX_VALUE (0xffffffff)
#define RTT_FREQUENCY (32768U) /* in Hz. For changes see `rtt.c` */
#define RTT_RUNSTDBY (1) /* Keep RTT running in sleep states */
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CONF_H_ */
/** @} */