1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 02:32:47 +01:00
RIOT/boards/sodaq-sara-aff/include/periph_conf.h

241 lines
6.8 KiB
C
Raw Normal View History

2018-11-06 14:42:44 +01:00
/*
* Copyright (C) 2017 Kees Bakker, SODAQ
* 2018 HAW Hamburg
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup boards_sodaq-sara-aff
* @{
*
* @file
* @brief Configuration of CPU peripherals for the SODAQ SARA AFF boards
*
* @author Kees Bakker <kees@sodaq.com>
* @author Leandro Lanzieri <leandro.lanzieri@haw-hamburg.de>
*/
#ifndef PERIPH_CONF_H
#define PERIPH_CONF_H
#include <stdint.h>
#include "cpu.h"
#include "periph_cpu.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @name External oscillator and clock configuration
*
* For selection of the used CORECLOCK, we have implemented two choices:
*
* - usage of the PLL fed by the internal 8MHz oscillator divided by 8
* - usage of the internal 8MHz oscillator directly, divided by N if needed
*
*
* The PLL option allows for the usage of a wider frequency range and a more
* stable clock with less jitter. This is why we use this option as default.
*
* The target frequency is computed from the PLL multiplier and the PLL divisor.
* Use the following formula to compute your values:
*
* CORECLOCK = ((PLL_MUL + 1) * 1MHz) / PLL_DIV
*
* NOTE: The PLL circuit does not run with less than 32MHz while the maximum PLL
* frequency is 96MHz. So PLL_MULL must be between 31 and 95!
*
*
* The internal Oscillator used directly can lead to a slightly better power
* efficiency to the cost of a less stable clock. Use this option when you know
* what you are doing! The actual core frequency is adjusted as follows:
*
* CORECLOCK = 8MHz / DIV
*
* NOTE: A core clock frequency below 1MHz is not recommended
*
* @{
*/
#define CLOCK_USE_PLL (1)
#if CLOCK_USE_PLL
/* edit these values to adjust the PLL output frequency */
#define CLOCK_PLL_MUL (47U) /* must be >= 31 & <= 95 */
#define CLOCK_PLL_DIV (1U) /* adjust to your needs */
/* generate the actual used core clock frequency */
#define CLOCK_CORECLOCK (((CLOCK_PLL_MUL + 1) * 1000000U) / CLOCK_PLL_DIV)
#else
/* edit this value to your needs */
#define CLOCK_DIV (1U)
/* generate the actual core clock frequency */
#define CLOCK_CORECLOCK (8000000 / CLOCK_DIV)
#endif
/** @} */
/**
* @name Timer peripheral configuration
* @{
*/
#define TIMER_NUMOF (2U)
#define TIMER_0_EN 1
#define TIMER_1_EN 1
/* Timer 0 configuration */
#define TIMER_0_DEV TC3->COUNT16
#define TIMER_0_CHANNELS 2
#define TIMER_0_MAX_VALUE (0xffff)
#define TIMER_0_ISR isr_tc3
/* Timer 1 configuration */
#define TIMER_1_DEV TC4->COUNT32
#define TIMER_1_CHANNELS 2
#define TIMER_1_MAX_VALUE (0xffffffff)
#define TIMER_1_ISR isr_tc4
/** @} */
/**
* @name UART configuration
* @{
* See Table 7-1 of the SAM D21 Datasheet (p. 29)
*/
static const uart_conf_t uart_config[] = {
{
.dev = &SERCOM5->USART,
.rx_pin = GPIO_PIN(PB, 30), /* D0, RX Pin */
.tx_pin = GPIO_PIN(PB, 31), /* D1, TX Pin */
.mux = GPIO_MUX_D,
.rx_pad = UART_PAD_RX_1,
.tx_pad = UART_PAD_TX_0,
.flags = UART_FLAG_NONE,
.gclk_src = GCLK_CLKCTRL_GEN_GCLK0
},
{
.dev = &SERCOM0->USART,
.rx_pin = GPIO_PIN(PA,5),
.tx_pin = GPIO_PIN(PA,6),
.mux = GPIO_MUX_D,
.rx_pad = UART_PAD_RX_1,
.tx_pad = UART_PAD_TX_2,
.flags = UART_FLAG_NONE,
.gclk_src = GCLK_CLKCTRL_GEN_GCLK0
},
};
/* interrupt function name mapping */
#define UART_0_ISR isr_sercom5
#define UART_1_ISR isr_sercom0
#define UART_NUMOF (sizeof(uart_config) / sizeof(uart_config[0]))
/** @} */
/**
* @name ADC configuration
* @{
*/
#define ADC_0_EN 1
#define ADC_MAX_CHANNELS 19
/* ADC 0 device configuration */
#define ADC_0_DEV ADC
#define ADC_0_IRQ ADC_IRQn
/* ADC 0 Default values */
#define ADC_0_CLK_SOURCE 0 /* GCLK_GENERATOR_0 */
#define ADC_0_PRESCALER ADC_CTRLB_PRESCALER_DIV512
#define ADC_0_NEG_INPUT ADC_INPUTCTRL_MUXNEG_GND
#define ADC_0_GAIN_FACTOR_DEFAULT ADC_INPUTCTRL_GAIN_1X
#define ADC_0_REF_DEFAULT ADC_REFCTRL_REFSEL_INT1V
static const adc_conf_chan_t adc_channels[] = {
/* port, pin, muxpos */
{GPIO_PIN(PB, 0), ADC_INPUTCTRL_MUXPOS_PIN8}, /* A0 */
{GPIO_PIN(PB, 1), ADC_INPUTCTRL_MUXPOS_PIN9}, /* A1 */
{GPIO_PIN(PB, 2), ADC_INPUTCTRL_MUXPOS_PIN10}, /* A2 */
{GPIO_PIN(PB, 3), ADC_INPUTCTRL_MUXPOS_PIN11}, /* A3 */
{GPIO_PIN(PA, 8), ADC_INPUTCTRL_MUXPOS_PIN16}, /* A4 */
{GPIO_PIN(PA, 9), ADC_INPUTCTRL_MUXPOS_PIN17}, /* A5 */
{GPIO_PIN(PA, 10), ADC_INPUTCTRL_MUXPOS_PIN18}, /* GROVE1/A6 */
{GPIO_PIN(PA, 11), ADC_INPUTCTRL_MUXPOS_PIN19}, /* GROVE2/A7 */
{GPIO_PIN(PB, 5), ADC_INPUTCTRL_MUXPOS_PIN13}, /* BAT_VOLT/A8 */
{GPIO_PIN(PA, 2), ADC_INPUTCTRL_MUXPOS_PIN0}, /* D2/DAC */
{GPIO_PIN(PA, 3), ADC_INPUTCTRL_MUXPOS_PIN1}, /* AREF */
};
#define ADC_0_CHANNELS (11)
#define ADC_NUMOF ADC_0_CHANNELS
/** @} */
/**
* @name SPI configuration
* @{
*/
static const spi_conf_t spi_config[] = {
{
.dev = &SERCOM3->SPI,
.miso_pin = GPIO_PIN(PA, 22),
.mosi_pin = GPIO_PIN(PA, 20),
.clk_pin = GPIO_PIN(PA, 21),
.miso_mux = GPIO_MUX_C,
.mosi_mux = GPIO_MUX_D,
.clk_mux = GPIO_MUX_D,
.miso_pad = SPI_PAD_MISO_0,
.mosi_pad = SPI_PAD_MOSI_2_SCK_3
}
};
#define SPI_NUMOF (sizeof(spi_config) / sizeof(spi_config[0]))
/** @} */
/**
* @name I2C configuration
* @{
*/
static const i2c_conf_t i2c_config[] = {
{
.dev = &(SERCOM1->I2CM),
.speed = I2C_SPEED_NORMAL,
.scl_pin = GPIO_PIN(PA, 17),
.sda_pin = GPIO_PIN(PA, 16),
.mux = GPIO_MUX_C,
.gclk_src = GCLK_CLKCTRL_GEN_GCLK0,
.flags = I2C_FLAG_NONE
}
};
#define I2C_NUMOF (sizeof(i2c_config) / sizeof(i2c_config[0]))
/** @} */
/**
* @name RTC configuration
* @{
*/
#define RTC_NUMOF (1U)
#define RTC_DEV RTC->MODE2
/** @} */
/**
* @name RTT configuration
* @{
*/
#define RTT_NUMOF (1U)
#define RTT_DEV RTC->MODE0
#define RTT_IRQ RTC_IRQn
#define RTT_IRQ_PRIO 10
#define RTT_ISR isr_rtc
#define RTT_MAX_VALUE (0xffffffff)
#define RTT_FREQUENCY (32768U) /* in Hz. For changes see `rtt.c` */
#define RTT_RUNSTDBY (1) /* Keep RTT running in sleep states */
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* PERIPH_CONF_H */
/** @} */