1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/samd5x/cpu.c

401 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (C) 2019 ML!PA Consulting GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_samd5x
* @{
*
* @file cpu.c
* @brief Implementation of the CPU initialization for Microchip SAMD5x/SAME5x MCUs
*
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
* @}
*/
#include "cpu.h"
#include "macros/units.h"
#include "periph_conf.h"
#include "periph/init.h"
#include "stdio_base.h"
/*
* An external inductor needs to be present on the board,
* so the feature can only be enabled by the board configuration.
*/
#ifndef USE_VREG_BUCK
#define USE_VREG_BUCK (0)
#endif
/*
* An external inductor needs to be present on the board,
* so the feature can only be enabled by the board configuration.
*/
#ifndef USE_VREG_BUCK
#define USE_VREG_BUCK (0)
#endif
#if CLOCK_CORECLOCK == 0
#error Please select CLOCK_CORECLOCK
#endif
#if EXTERNAL_OSC32_SOURCE && ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE
#error Select EITHER external 32kHz oscillator OR internal 32kHz Oscillator
#endif
#ifndef XOSC0_FREQUENCY
#define XOSC0_FREQUENCY (0)
#endif
#ifndef XOSC1_FREQUENCY
#define XOSC1_FREQUENCY (0)
#endif
#define GCLK_SOURCE_ACTIVE_XOSC (XOSC0_FREQUENCY ? GCLK_SOURCE_XOSC0 : GCLK_SOURCE_XOSC1)
#if USE_XOSC_ONLY /* don't use fast internal oscillators */
#if (XOSC0_FREQUENCY == 0) && (XOSC1_FREQUENCY == 0)
#error Configuration error: no external oscillator frequency defined
#endif
#if (CLOCK_CORECLOCK > SAM0_XOSC_FREQ_HZ)
#error When using an external oscillator for the main clock, the CPU frequency can't exceed it's frequency.
#endif
#define USE_DPLL 0
#define USE_DFLL 0
#define USE_XOSC 1
#ifndef GCLK_TIMER_HZ
#define GCLK_TIMER_HZ MHZ(4)
#endif
#else /* !USE_XOSC_ONLY */
/* Main clock > 48 MHz -> use DPLL, otherwise use DFLL */
#define USE_DPLL (CLOCK_CORECLOCK > SAM0_DFLL_FREQ_HZ)
#define USE_DFLL 1
#define USE_XOSC 0
#ifndef GCLK_TIMER_HZ
#define GCLK_TIMER_HZ MHZ(8)
#endif
#endif /* USE_XOSC_ONLY */
#if (CLOCK_CORECLOCK <= SAM0_DFLL_FREQ_HZ) && (SAM0_DFLL_FREQ_HZ % CLOCK_CORECLOCK)
#error For frequencies <= 48 MHz, CLOCK_CORECLOCK must be a divider of 48 MHz
#endif
/* If the CPU clock is lower than the minimal DPLL Freq
set fDPLL = 2 * CLOCK_CORECLOCK */
#if USE_DPLL && (CLOCK_CORECLOCK < SAM0_DPLL_FREQ_MIN_HZ)
#define DPLL_DIV 2
#else
#define DPLL_DIV 1
#endif
static void xosc32k_init(void)
{
if (!EXTERNAL_OSC32_SOURCE) {
OSC32KCTRL->XOSC32K.reg = 0;
return;
}
OSC32KCTRL->XOSC32K.reg = OSC32KCTRL_XOSC32K_ENABLE
| OSC32KCTRL_XOSC32K_EN1K
| OSC32KCTRL_XOSC32K_EN32K
| OSC32KCTRL_XOSC32K_RUNSTDBY
| OSC32KCTRL_XOSC32K_XTALEN
| OSC32KCTRL_XOSC32K_STARTUP(7);
while (!OSC32KCTRL->STATUS.bit.XOSC32KRDY) {}
}
static void xosc_init(uint8_t idx)
{
uint32_t freq;
if (!USE_XOSC ||
(idx == 0 && XOSC0_FREQUENCY == 0) ||
(idx == 1 && XOSC1_FREQUENCY == 0)) {
OSCCTRL->XOSCCTRL[idx].reg = 0;
return;
}
assert(idx == 0 || idx == 1);
if (idx == 0) {
freq = XOSC0_FREQUENCY;
} else if (idx == 1) {
freq = XOSC1_FREQUENCY;
}
uint32_t reg = OSCCTRL_XOSCCTRL_XTALEN
| OSCCTRL_XOSCCTRL_ENALC
| OSCCTRL_XOSCCTRL_ENABLE;
/* SAM D5x/E5x Manual 54.12.1 (Crystal oscillator characteristics) &
* 28.8.6 (External Multipurpose Crystal Oscillator Control)
*/
if (freq <= MHZ(8)) {
/* 72200 cycles @ 8MHz = 9025 µs */
reg |= OSCCTRL_XOSCCTRL_STARTUP(9)
| OSCCTRL_XOSCCTRL_IMULT(3)
| OSCCTRL_XOSCCTRL_IPTAT(2);
} else if (freq <= MHZ(16)) {
/* 62000 cycles @ 16MHz = 3875 µs */
reg |= OSCCTRL_XOSCCTRL_STARTUP(7)
| OSCCTRL_XOSCCTRL_IMULT(4)
| OSCCTRL_XOSCCTRL_IPTAT(3);
} else if (freq <= MHZ(24)) {
/* 68500 cycles @ 24MHz = 2854 µs */
reg |= OSCCTRL_XOSCCTRL_STARTUP(7)
| OSCCTRL_XOSCCTRL_IMULT(5)
| OSCCTRL_XOSCCTRL_IPTAT(3);
} else {
/* 38500 cycles @ 48MHz = 802 µs */
reg |= OSCCTRL_XOSCCTRL_STARTUP(5)
| OSCCTRL_XOSCCTRL_IMULT(6)
| OSCCTRL_XOSCCTRL_IPTAT(3);
}
OSCCTRL->XOSCCTRL[idx].reg = reg;
while (!(OSCCTRL->STATUS.vec.XOSCRDY & (idx + 1))) {}
}
static void dfll_init(void)
{
uint32_t reg = OSCCTRL_DFLLCTRLB_QLDIS
#ifdef OSCCTRL_DFLLCTRLB_WAITLOCK
| OSCCTRL_DFLLCTRLB_WAITLOCK
#endif
;
/* workaround for Errata 2.8.3 DFLLVAL.FINE Value When DFLL48M Re-enabled */
OSCCTRL->DFLLMUL.reg = 0; /* Write new DFLLMULL configuration */
OSCCTRL->DFLLCTRLB.reg = 0; /* Select Open loop configuration */
OSCCTRL->DFLLCTRLA.bit.ENABLE = 1; /* Enable DFLL */
OSCCTRL->DFLLVAL.reg = OSCCTRL->DFLLVAL.reg; /* Reload DFLLVAL register */
OSCCTRL->DFLLCTRLB.reg = reg; /* Write final DFLL configuration */
OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_ENABLE;
while (!OSCCTRL->STATUS.bit.DFLLRDY) {}
}
static void fdpll0_init(uint32_t f_cpu)
{
if (!USE_DPLL) {
OSCCTRL->Dpll[0].DPLLCTRLA.reg = 0;
return;
}
/* We source the DPLL from 32kHz GCLK1 */
const uint32_t LDR = ((f_cpu << 5) / 32768);
/* disable the DPLL before changing the configuration */
OSCCTRL->Dpll[0].DPLLCTRLA.bit.ENABLE = 0;
while (OSCCTRL->Dpll[0].DPLLSYNCBUSY.reg) {}
/* set DPLL clock source */
GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL0].reg = GCLK_PCHCTRL_GEN(1) | GCLK_PCHCTRL_CHEN;
while (!(GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL0].reg & GCLK_PCHCTRL_CHEN)) {}
OSCCTRL->Dpll[0].DPLLRATIO.reg = OSCCTRL_DPLLRATIO_LDRFRAC(LDR & 0x1F)
| OSCCTRL_DPLLRATIO_LDR((LDR >> 5) - 1);
/* Without LBYPASS, startup takes very long, see errata section 2.13. */
OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_REFCLK_GCLK
| OSCCTRL_DPLLCTRLB_WUF
| OSCCTRL_DPLLCTRLB_LBYPASS;
OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE;
while (OSCCTRL->Dpll[0].DPLLSYNCBUSY.reg) {}
while (!(OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY &&
OSCCTRL->Dpll[0].DPLLSTATUS.bit.LOCK)) {}
}
static void gclk_connect(uint8_t id, uint8_t src, uint32_t flags) {
GCLK->GENCTRL[id].reg = GCLK_GENCTRL_SRC(src) | GCLK_GENCTRL_GENEN | flags | GCLK_GENCTRL_IDC;
while (GCLK->SYNCBUSY.reg & GCLK_SYNCBUSY_GENCTRL(id)) {}
}
void sam0_gclk_enable(uint8_t id)
{
/* clocks 0 & 1 are always running */
switch (id) {
case SAM0_GCLK_TIMER:
/* 8 MHz clock used by xtimer */
if (USE_DPLL) {
gclk_connect(SAM0_GCLK_TIMER,
GCLK_SOURCE_DPLL0,
GCLK_GENCTRL_DIV(DPLL_DIV * CLOCK_CORECLOCK / GCLK_TIMER_HZ));
} else if (USE_DFLL) {
gclk_connect(SAM0_GCLK_TIMER,
GCLK_SOURCE_DFLL,
GCLK_GENCTRL_DIV(SAM0_DFLL_FREQ_HZ / GCLK_TIMER_HZ));
} else if (USE_XOSC) {
gclk_connect(SAM0_GCLK_TIMER,
GCLK_SOURCE_ACTIVE_XOSC,
GCLK_GENCTRL_DIV(SAM0_XOSC_FREQ_HZ / GCLK_TIMER_HZ));
}
break;
case SAM0_GCLK_PERIPH:
if (USE_DFLL) {
gclk_connect(SAM0_GCLK_PERIPH, GCLK_SOURCE_DFLL, 0);
} else if (USE_XOSC) {
gclk_connect(SAM0_GCLK_PERIPH, GCLK_SOURCE_ACTIVE_XOSC, 0);
}
break;
}
}
uint32_t sam0_gclk_freq(uint8_t id)
{
switch (id) {
case SAM0_GCLK_MAIN:
return CLOCK_CORECLOCK;
case SAM0_GCLK_32KHZ:
return 32768;
case SAM0_GCLK_TIMER:
return GCLK_TIMER_HZ;
case SAM0_GCLK_PERIPH:
if (USE_DFLL) {
return SAM0_DFLL_FREQ_HZ;
} else if (USE_XOSC) {
return SAM0_XOSC_FREQ_HZ;
} else {
assert(0);
return 0;
}
default:
return 0;
}
}
void cpu_pm_cb_enter(int deep)
{
(void) deep;
/* will be called before entering sleep */
}
void cpu_pm_cb_leave(int deep)
{
/* will be called after wake-up */
if (deep) {
/* DFLL needs to be re-initialized to work around errata 2.8.3 */
dfll_init();
}
}
/**
* @brief Initialize the CPU, set IRQ priorities, clocks
*/
void cpu_init(void)
{
/* CPU starts with DFLL48 as clock source, so we must use the LDO */
sam0_set_voltage_regulator(SAM0_VREG_LDO);
/* Disable the RTC module to prevent synchronization issues during CPU init
if the RTC was running from a previous boot (e.g wakeup from backup) */
if (RTC->MODE2.CTRLA.bit.ENABLE) {
while (RTC->MODE2.SYNCBUSY.reg) {}
RTC->MODE2.CTRLA.bit.ENABLE = 0;
while (RTC->MODE2.SYNCBUSY.reg) {}
}
/* initialize the Cortex-M core */
cortexm_init();
/* turn on only needed APB peripherals */
MCLK->APBAMASK.reg = MCLK_APBAMASK_MCLK
| MCLK_APBAMASK_OSCCTRL
| MCLK_APBAMASK_OSC32KCTRL
| MCLK_APBAMASK_GCLK
| MCLK_APBAMASK_SUPC
| MCLK_APBAMASK_PAC
#ifdef MODULE_PERIPH_PM
| MCLK_APBAMASK_PM
#endif
#ifdef MODULE_PERIPH_GPIO_IRQ
| MCLK_APBAMASK_EIC
#endif
;
MCLK->APBBMASK.reg = 0
#ifdef MODULE_PERIPH_FLASHPAGE
| MCLK_APBBMASK_NVMCTRL
#endif
#ifdef MODULE_PERIPH_GPIO
| MCLK_APBBMASK_PORT
#endif
;
MCLK->APBCMASK.reg = 0;
MCLK->APBDMASK.reg = 0;
/* enable the Cortex M Cache Controller */
CMCC->CTRL.bit.CEN = 1;
/* make sure main clock is not sourced from DPLL */
dfll_init();
gclk_connect(SAM0_GCLK_MAIN, GCLK_SOURCE_DFLL, 0);
xosc32k_init();
if (EXTERNAL_OSC32_SOURCE) {
gclk_connect(SAM0_GCLK_32KHZ, GCLK_SOURCE_XOSC32K, 0);
} else if (ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE) {
gclk_connect(SAM0_GCLK_32KHZ, GCLK_SOURCE_OSCULP32K, 0);
}
xosc_init(0);
xosc_init(1);
fdpll0_init(CLOCK_CORECLOCK * DPLL_DIV);
/* select the source of the main clock */
if (USE_DPLL) {
gclk_connect(SAM0_GCLK_MAIN, GCLK_SOURCE_DPLL0,
GCLK_GENCTRL_DIV(DPLL_DIV));
} else if (USE_DFLL) {
gclk_connect(SAM0_GCLK_MAIN, GCLK_SOURCE_DFLL,
GCLK_GENCTRL_DIV(SAM0_DFLL_FREQ_HZ / CLOCK_CORECLOCK));
} else if (USE_XOSC) {
gclk_connect(SAM0_GCLK_MAIN, GCLK_SOURCE_ACTIVE_XOSC,
GCLK_GENCTRL_DIV(SAM0_XOSC_FREQ_HZ / CLOCK_CORECLOCK));
}
/* make sure fast clocks are off */
if (!USE_DFLL) {
OSCCTRL->DFLLCTRLA.reg = 0;
}
/* when fast internal oscillators are not used, we can turn on the buck converter */
if (!USE_DFLL && !USE_DPLL && USE_VREG_BUCK) {
sam0_set_voltage_regulator(SAM0_VREG_BUCK);
}
2020-06-11 11:05:51 +02:00
#ifdef MODULE_PERIPH_DMA
/* initialize DMA streams */
dma_init();
#endif
/* initialize stdio prior to periph_init() to allow use of DEBUG() there */
stdio_init();
/* trigger static peripheral initialization */
periph_init();
/* set ONDEMAND bit after all clocks have been configured */
/* This is to avoid setting the source for the main clock to ONDEMAND before using it. */
OSCCTRL->Dpll[0].DPLLCTRLA.reg |= OSCCTRL_DPLLCTRLA_ONDEMAND;
}