1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/cpu/stm32_common/periph/can.c

1264 lines
35 KiB
C
Raw Normal View History

/*
* Copyright (C) 2016-2018 OTA keys S.A.
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_stm32_common
* @{
*
* @file
* @brief Implementation of the CAN controller driver
*
* @author Vincent Dupont <vincent@otakeys.com>
* @}
*/
#include <string.h>
#include <errno.h>
#include <limits.h>
#include <cpu_conf.h>
#include "periph/can.h"
#include "periph/gpio.h"
#include "can/device.h"
#include "can/common.h"
#include "periph_conf.h"
#include "pm_layered.h"
#include "thread.h"
#include "sched.h"
#include "mutex.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define CAN_MAX_WAIT_CHANGE (10000U)
#define CAN_TIxR_SFF_SHIFT (21U)
#define CAN_TIxR_EFF_SHIFT (3U)
#define CAN_MCR_BIT_DONT_TOUCH (0xFFFFFF03)
typedef enum {
MODE_NORMAL,
MODE_SLEEP,
MODE_INIT,
} can_mode_t;
static int _init(candev_t *candev);
static void _isr(candev_t *candev);
static int _send(candev_t *candev, const struct can_frame *frame);
static int _abort(candev_t *candev, const struct can_frame *frame);
static int _set(candev_t *candev, canopt_t opt, void *value, size_t value_len);
static int _get(candev_t *candev, canopt_t opt, void *value, size_t max_len);
static int _set_filter(candev_t *candev, const struct can_filter *filter);
static int _remove_filter(candev_t *candev, const struct can_filter *filter);
static void tx_irq_handler(can_t *dev);
static void tx_isr(can_t *dev);
static void tx_conf(can_t *dev, int mailbox);
static void rx_irq_handler(can_t *dev, int mailbox);
static void rx_isr(can_t *dev);
static void sce_irq_handler(can_t *dev);
static inline void set_bit_timing(can_t *dev);
static inline can_mode_t get_mode(CAN_TypeDef *can);
static int set_mode(CAN_TypeDef *can, can_mode_t mode);
static const candev_driver_t candev_stm32_driver = {
.send = _send,
.init = _init,
.isr = _isr,
.get = _get,
.set = _set,
.abort = _abort,
.set_filter = _set_filter,
.remove_filter = _remove_filter,
};
static const struct can_bittiming_const bittiming_const = {
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 1,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
enum {
STATUS_NOT_USED,
STATUS_ON,
STATUS_READY_FOR_SLEEP,
STATUS_SLEEP,
};
static uint8_t _status[CANDEV_STM32_CHAN_NUMOF];
static can_t *_can[CANDEV_STM32_CHAN_NUMOF];
static inline int get_channel(CAN_TypeDef *can)
{
#if CANDEV_STM32_CHAN_NUMOF == 1
(void)can;
return 0;
#else
return (int) (((uint32_t)can - (uint32_t)CAN1) >> 10);
#endif
}
static inline can_mode_t get_mode(CAN_TypeDef *can)
{
if ((can->MCR & CAN_MCR_SLEEP) == CAN_MCR_SLEEP) {
return MODE_SLEEP;
}
else if ((can->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) {
return MODE_INIT;
}
else {
return MODE_NORMAL;
}
}
static int set_mode(CAN_TypeDef *can, can_mode_t mode)
{
int max_loop = CAN_MAX_WAIT_CHANGE;
int res = 0;
switch (mode) {
case MODE_NORMAL:
can->MCR &= ~(CAN_MCR_SLEEP | CAN_MCR_INRQ);
/* wait for hardare confirmation */
while (((can->MSR & CAN_MSR_INAK) || (can->MSR & CAN_MSR_SLAK)) && max_loop != 0) {
max_loop--;
}
break;
case MODE_SLEEP:
/* set sleep mode */
can->MCR &= ~CAN_MCR_INRQ;
can->MCR |= CAN_MCR_SLEEP;
while (((can->MSR & CAN_MSR_INAK) || !(can->MSR & CAN_MSR_SLAK)) && max_loop != 0) {
max_loop--;
}
break;
case MODE_INIT:
can->MCR &= ~CAN_MCR_SLEEP;
can->MCR |= CAN_MCR_INRQ;
/* wait for hardare confirmation */
while ((!(can->MSR & CAN_MSR_INAK) || (can->MSR & CAN_MSR_SLAK)) && max_loop != 0) {
max_loop--;
}
break;
default:
DEBUG("unsupported mode\n");
res = -1;
break;
}
if (max_loop == 0) {
DEBUG("candev_stm32: didn't switch mode %d\n", mode);
res = -1;
}
return res;
}
static inline int filter_is_set(CAN_TypeDef *master, uint8_t filter)
{
return (master->FA1R & (1 << filter)) >> filter;
}
void can_init(can_t *dev, const can_conf_t *conf)
{
dev->candev.driver = &candev_stm32_driver;
struct can_bittiming timing = { .bitrate = CANDEV_STM32_DEFAULT_BITRATE,
.sample_point = CANDEV_STM32_DEFAULT_SPT };
can_device_calc_bittiming(CLOCK_APB1, &bittiming_const, &timing);
memcpy(&dev->candev.bittiming, &timing, sizeof(timing));
dev->conf = conf;
dev->rx_pin = GPIO_UNDEF;
dev->tx_pin = GPIO_UNDEF;
}
static void set_filter(CAN_TypeDef *can, uint32_t fr1, uint32_t fr2, uint8_t filter, uint8_t fifo)
{
/* Set filter/mask */
if ((fr1 & CAN_EFF_FLAG) == CAN_EFF_FLAG) {
can->sFilterRegister[filter].FR1 = ((fr1 & CAN_EFF_MASK) << CAN_TIxR_EFF_SHIFT)
| CAN_TI0R_IDE;
can->sFilterRegister[filter].FR2 = ((fr2 & CAN_EFF_MASK) << CAN_TIxR_EFF_SHIFT)
| CAN_TI0R_IDE;
}
else {
can->sFilterRegister[filter].FR1 = (fr1 & CAN_SFF_MASK) << CAN_TIxR_SFF_SHIFT;
can->sFilterRegister[filter].FR2 = (fr2 & CAN_SFF_MASK) << CAN_TIxR_SFF_SHIFT;
}
if (fifo == 0) {
can->FFA1R &= ~(1 << filter); /* To FIFO 0 */
}
else {
can->FFA1R |= (1 << filter); /* To FIFO 1 */
}
can->FM1R &= ~(1 << filter); /* Identifier Mask mode */
can->FS1R |= (1 << filter); /* Single 32-bit scale config */
can->FA1R |= (1 << filter); /* Activate filer */
}
static void get_can_filter(CAN_TypeDef *can, uint8_t filter_id, uint32_t *filter, uint32_t *mask)
{
uint32_t fr1 = can->sFilterRegister[filter_id].FR1;
uint32_t fr2 = can->sFilterRegister[filter_id].FR2;
if ((fr1 & CAN_TI0R_IDE) == CAN_TI0R_IDE) {
*filter = ((fr1 >> CAN_TIxR_EFF_SHIFT) & CAN_EFF_MASK) | CAN_EFF_FLAG;
*mask = ((fr2 >> CAN_TIxR_EFF_SHIFT) & CAN_EFF_MASK) | CAN_EFF_FLAG;
}
else {
*filter = (fr1 >> CAN_TIxR_SFF_SHIFT) & CAN_SFF_MASK;
*mask = (fr2 >> CAN_TIxR_SFF_SHIFT) & CAN_SFF_MASK;
}
if (fr1 & CAN_TI0R_RTR) {
*filter |= CAN_RTR_FLAG;
}
if (fr2 & CAN_TI0R_RTR) {
*mask |= CAN_RTR_FLAG;
}
}
static inline void unset_filter(CAN_TypeDef *can, uint8_t filter)
{
can->FA1R &= ~(1 << filter);
}
#ifndef CPU_FAM_STM32F1
void candev_stm32_set_pins(can_t *dev, gpio_t tx_pin, gpio_t rx_pin,
gpio_af_t af)
#else
void candev_stm32_set_pins(can_t *dev, gpio_t tx_pin, gpio_t rx_pin)
#endif
{
if (dev->tx_pin != GPIO_UNDEF) {
gpio_init(dev->tx_pin, GPIO_IN);
gpio_init_analog(dev->tx_pin);
}
if (dev->rx_pin != GPIO_UNDEF) {
gpio_init(dev->rx_pin, GPIO_IN);
gpio_init_analog(dev->rx_pin);
}
dev->tx_pin = tx_pin;
dev->rx_pin = rx_pin;
/* configure pins */
gpio_init(rx_pin, GPIO_IN);
gpio_init(tx_pin, GPIO_OUT);
#ifndef CPU_FAM_STM32F1
dev->af = af;
gpio_init_af(rx_pin, af);
gpio_init_af(tx_pin, af);
#else
gpio_init_af(tx_pin, GPIO_AF_OUT_PP);
#endif
}
static int _init(candev_t *candev)
{
can_t *dev = (can_t *)candev;
int res = 0;
_can[get_channel(dev->conf->can)] = dev;
memset(dev->tx_mailbox, 0, sizeof(dev->tx_mailbox));
memset(&dev->rx_fifo, 0, sizeof(dev->rx_fifo));
dev->isr_flags.isr_tx = 0;
dev->isr_flags.isr_rx = 0;
#if CANDEV_STM32_CHAN_NUMOF > 1
/* Enable master clock */
periph_clk_en(APB1, dev->conf->master_rcc_mask);
#endif
/* Enable device clock */
periph_clk_en(APB1, dev->conf->rcc_mask);
_status[get_channel(dev->conf->can)] = STATUS_ON;
/* configure pins */
#ifndef CPU_FAM_STM32F1
candev_stm32_set_pins(dev, dev->conf->tx_pin, dev->conf->rx_pin, dev->conf->af);
#else
candev_stm32_set_pins(dev, dev->conf->tx_pin, dev->conf->rx_pin);
#endif
set_mode(dev->conf->can, MODE_INIT);
/* Set configuration */
uint32_t mask_config = (CAN_MCR_TTCM * dev->conf->ttcm) | (CAN_MCR_ABOM * dev->conf->abom) |
(CAN_MCR_AWUM * dev->conf->awum) | (CAN_MCR_NART * dev->conf->nart) |
(CAN_MCR_RFLM * dev->conf->rflm) | (CAN_MCR_TXFP * dev->conf->txfp);
dev->conf->can->MCR |= mask_config;
dev->conf->can->MCR &= (mask_config | CAN_MCR_BIT_DONT_TOUCH);
set_bit_timing(dev);
/* Loopback and/or silent mode */
dev->conf->can->BTR |= (CAN_BTR_LBKM * dev->conf->lbkm) | (CAN_BTR_SILM * dev->conf->silm);
/* Default filter config: No rx frame */
#if CANDEV_STM32_CHAN_NUMOF > 1
if (dev->conf->can == dev->conf->can_master) {
assert(dev->conf->first_filter == 0);
assert(dev->conf->nb_filters <= CAN_STM32_NB_FILTER);
#endif
dev->conf->can->FMR = CAN_FMR_FINIT;
#if CANDEV_STM32_CHAN_NUMOF > 1
/* Clear start bank */
dev->conf->can->FMR &= ~CAN_FMR_CAN2SB;
/* Set start filter */
dev->conf->can->FMR |= dev->conf->nb_filters << 8;
for (int i = 0; i < dev->conf->nb_filters; i++) {
#else
for (int i = 0; i < CAN_STM32_NB_FILTER; i++) {
#endif
dev->conf->can->FA1R &= ~(1 << i);
}
dev->conf->can->FMR &= ~CAN_FMR_FINIT;
#if CANDEV_STM32_CHAN_NUMOF > 1
}
else {
can_mode_t mode = get_mode(dev->conf->can_master);
set_mode(dev->conf->can_master, MODE_INIT);
dev->conf->can_master->FMR = CAN_FMR_FINIT;
dev->conf->can_master->FMR &= ~CAN_FMR_CAN2SB;
dev->conf->can_master->FMR |= dev->conf->first_filter << 8;
for (int i = 0; i < dev->conf->nb_filters; i++) {
dev->conf->can_master->FA1R &= ~(1 << (i + dev->conf->first_filter));
}
dev->conf->can_master->FMR &= ~CAN_FMR_FINIT;
set_mode(dev->conf->can_master, mode);
}
#endif
/* Clear interrupt flags */
dev->conf->can->TSR |= CAN_TSR_RQCP0 | CAN_TSR_RQCP1 | CAN_TSR_RQCP2;
dev->conf->can->RF0R |= CAN_RF0R_FMP0 | CAN_RF0R_FULL0 | CAN_RF0R_FOVR0;
dev->conf->can->RF1R |= CAN_RF1R_FMP1 | CAN_RF1R_FULL1 | CAN_RF1R_FOVR1;
dev->conf->can->ESR |= CAN_ESR_EWGF | CAN_ESR_EPVF | CAN_ESR_BOFF;
dev->conf->can->MSR |= CAN_MSR_WKUI;
dev->conf->can->IER = CAN_IER_WKUIE |
CAN_IER_EPVIE | CAN_IER_EWGIE | CAN_IER_ERRIE | CAN_IER_BOFIE |
CAN_IER_FOVIE1 | CAN_IER_FMPIE1 | CAN_IER_FOVIE0 | CAN_IER_FMPIE0 |
CAN_IER_TMEIE;
/* Enable interrupts */
#if defined(CPU_FAM_STM32F0)
NVIC_EnableIRQ(dev->conf->irqn);
#else
NVIC_EnableIRQ(dev->conf->tx_irqn);
NVIC_EnableIRQ(dev->conf->rx0_irqn);
NVIC_EnableIRQ(dev->conf->rx1_irqn);
NVIC_EnableIRQ(dev->conf->sce_irqn);
#endif
res = set_mode(dev->conf->can, MODE_NORMAL);
#ifdef STM32_PM_STOP
pm_block(STM32_PM_STOP);
#endif
return res;
}
static inline void set_bit_timing(can_t *dev)
{
/* Set bit timing */
dev->conf->can->BTR = (((uint32_t)(dev->candev.bittiming.sjw - 1) << 24) & CAN_BTR_SJW) |
(((uint32_t)(dev->candev.bittiming.phase_seg2 - 1) << 20) & CAN_BTR_TS2) |
(((uint32_t)((dev->candev.bittiming.phase_seg1 +
dev->candev.bittiming.prop_seg)
- 1) << 16) & CAN_BTR_TS1) |
((uint32_t)(dev->candev.bittiming.brp - 1) & CAN_BTR_BRP);
}
static int _send(candev_t *candev, const struct can_frame *frame)
{
can_t *dev = (can_t *)candev;
CAN_TypeDef *can = dev->conf->can;
int mailbox = 0;
DEBUG("_send: candev=%p, frame=%p\n", (void *) candev, (void *) frame);
for (mailbox = 0; mailbox < CAN_STM32_TX_MAILBOXES; mailbox++) {
if (dev->tx_mailbox[mailbox] == NULL) {
break;
}
}
if (mailbox == CAN_STM32_TX_MAILBOXES) {
return -EBUSY;
}
dev->tx_mailbox[mailbox] = frame;
if ((frame->can_id & CAN_EFF_FLAG) == CAN_EFF_FLAG) {
can->sTxMailBox[mailbox].TIR = (frame->can_id & CAN_EFF_MASK) << CAN_TIxR_EFF_SHIFT
| CAN_TI0R_IDE;
}
else {
can->sTxMailBox[mailbox].TIR = (frame->can_id & CAN_SFF_MASK) << CAN_TIxR_SFF_SHIFT;
}
can->sTxMailBox[mailbox].TDTR = frame->can_dlc & CAN_TDT0R_DLC;
can->sTxMailBox[mailbox].TDLR = 0;
can->sTxMailBox[mailbox].TDHR = 0;
for (int j = 0; j < 4 && frame->can_dlc > j; j++) {
can->sTxMailBox[mailbox].TDLR |= (uint32_t)(frame->data[j] << (8 * j));
}
for (int j = 4; j < 8 && frame->can_dlc > j; j++) {
can->sTxMailBox[mailbox].TDHR |= (uint32_t)(frame->data[j] << (8 * (j - 4)));
}
can->sTxMailBox[mailbox].TIR |= CAN_TI0R_TXRQ;
return mailbox;
}
static int _abort(candev_t *candev, const struct can_frame *frame)
{
can_t *dev = (can_t *)candev;
CAN_TypeDef *can = dev->conf->can;
int mailbox = 0;
for (mailbox = 0; mailbox < CAN_STM32_TX_MAILBOXES; mailbox++) {
if (dev->tx_mailbox[mailbox] == frame) {
break;
}
}
if (mailbox == CAN_STM32_TX_MAILBOXES) {
return -EOVERFLOW;
}
can->TSR |= CAN_TSR_ABRQ0 << (8 * mailbox);
dev->tx_mailbox[mailbox] = NULL;
return 0;
}
#define CAN_RIxR_SFF_SHIFT 21
#define CAN_RIxR_EFF_SHIFT 3
#define CAN_RDTxR_FMI_SHIFT 8
static int read_frame(can_t *dev, struct can_frame *frame, int mailbox)
{
CAN_TypeDef *can = dev->conf->can;
/* Get frame ID */
if ((can->sFIFOMailBox[mailbox].RIR & CAN_RI0R_IDE) == CAN_RI0R_IDE) {
frame->can_id = can->sFIFOMailBox[mailbox].RIR >> CAN_RIxR_EFF_SHIFT;
frame->can_id |= CAN_EFF_FLAG;
}
else {
frame->can_id = can->sFIFOMailBox[mailbox].RIR >> CAN_RIxR_SFF_SHIFT;
}
if ((can->sFIFOMailBox[mailbox].RIR & CAN_RI0R_RTR) == CAN_RI0R_RTR) {
frame->can_id |= CAN_RTR_FLAG;
}
/* Get DLC */
frame->can_dlc = can->sFIFOMailBox[mailbox].RDTR & CAN_RDT0R_DLC;
/* Get Data */
for (int j = 0; j < 4; j++) {
frame->data[j] = (can->sFIFOMailBox[mailbox].RDLR >> (j * 8)) & 0xFF;
}
for (int j = 4; j < 8; j++) {
frame->data[j] = (can->sFIFOMailBox[mailbox].RDHR >> ((j - 4) * 8)) & 0xFF;
}
/* filter number matching the reveived frame */
/* filter = (can->sFIFOMailBox[mailbox].RDTR & CAN_RDT0R_FMI) >> CAN_RDTxR_FMI_SHIFT; */
/* Release input mailbox */
if (mailbox == 0) {
can->RF0R |= CAN_RF0R_RFOM0;
}
else {
can->RF1R |= CAN_RF1R_RFOM1;
}
return 0;
}
static void _isr(candev_t *candev)
{
can_t *dev = (can_t *)candev;
if (dev->isr_flags.isr_tx) {
tx_isr(dev);
}
if (dev->isr_flags.isr_wkup) {
if (dev->candev.event_callback) {
dev->candev.event_callback(&dev->candev, CANDEV_EVENT_WAKE_UP, NULL);
}
}
unsigned int irq;
irq = irq_disable();
if (dev->isr_flags.isr_rx & 1) {
dev->isr_flags.isr_rx &= ~1;
irq_restore(irq);
rx_isr(dev);
}
else {
irq_restore(irq);
}
irq = irq_disable();
if (dev->isr_flags.isr_rx & 2) {
dev->isr_flags.isr_rx &= ~2;
irq_restore(irq);
rx_isr(dev);
}
else {
irq_restore(irq);
}
}
static inline int get_first_filter(can_t *dev)
{
#if CANDEV_STM32_CHAN_NUMOF == 1
(void)dev;
return 0;
#else
return dev->conf->first_filter;
#endif
}
static inline int get_nb_filter(can_t *dev)
{
#if CANDEV_STM32_CHAN_NUMOF == 1
(void)dev;
return CAN_STM32_NB_FILTER;
#else
return dev->conf->nb_filters;
#endif
}
static inline CAN_TypeDef *get_master(can_t *dev)
{
#if CANDEV_STM32_CHAN_NUMOF == 1
return dev->conf->can;
#else
return dev->conf->can_master;
#endif
}
static inline int is_master(can_t *dev)
{
#if CANDEV_STM32_CHAN_NUMOF == 1
(void)dev;
return 1;
#else
return dev->conf->can_master == dev->conf->can;
#endif
}
static void _wkup_cb(void *arg)
{
can_t *dev = arg;
gpio_irq_disable(dev->rx_pin);
DEBUG("int wkup: %p\n", arg);
dev->isr_flags.isr_wkup = 1;
if (dev->candev.event_callback) {
dev->candev.event_callback(&dev->candev, CANDEV_EVENT_ISR, NULL);
}
}
#if CANDEV_STM32_CHAN_NUMOF > 1
static void enable_int(can_t *dev, int master_from_slave)
{
DEBUG("EN int (%d) (%p)\n", master_from_slave, (void *)dev);
if (master_from_slave) {
can_t *master = _can[get_channel(get_master(dev))];
gpio_init_int(master->rx_pin, GPIO_IN, GPIO_FALLING, _wkup_cb, master);
}
else {
gpio_init_int(dev->rx_pin, GPIO_IN, GPIO_FALLING, _wkup_cb, dev);
}
}
#endif
static void disable_int(can_t *dev, int master_from_slave)
{
DEBUG("DIS int (%d) (%p)\n", master_from_slave, (void *)dev);
if (master_from_slave) {
#if CANDEV_STM32_CHAN_NUMOF > 1
can_t *master = _can[get_channel(get_master(dev))];
gpio_irq_disable(master->rx_pin);
#ifndef CPU_FAM_STM32F1
candev_stm32_set_pins(master, master->tx_pin, master->rx_pin, master->af);
#else
candev_stm32_set_pins(master, master->tx_pin, master->rx_pin);
#endif
#endif
}
else {
gpio_irq_disable(dev->rx_pin);
#ifndef CPU_FAM_STM32F1
candev_stm32_set_pins(dev, dev->tx_pin, dev->rx_pin, dev->af);
#else
candev_stm32_set_pins(dev, dev->tx_pin, dev->rx_pin);
#endif
}
}
static void turn_off(can_t *dev)
{
DEBUG("turn off (%p)\n", (void *)dev);
unsigned irq = irq_disable();
#if CANDEV_STM32_CHAN_NUMOF > 1
if (is_master(dev)) {
int chan = get_channel(dev->conf->can);
if (chan < CANDEV_STM32_CHAN_NUMOF - 1 && _status[chan + 1] != STATUS_SLEEP) {
/* a slave exists and is not sleeping */
_status[chan] = STATUS_READY_FOR_SLEEP;
}
else {
/* no slave or slave already sleeping */
if (_status[get_channel(dev->conf->can)] != STATUS_SLEEP) {
#ifdef STM32_PM_STOP
pm_unblock(STM32_PM_STOP);
#endif
}
_status[chan] = STATUS_SLEEP;
periph_clk_dis(APB1, dev->conf->rcc_mask);
enable_int(dev, 0);
}
}
else {
int master_chan = get_channel(get_master(dev));
switch (_status[master_chan]) {
case STATUS_READY_FOR_SLEEP:
_status[master_chan] = STATUS_SLEEP;
#ifdef STM32_PM_STOP
pm_unblock(STM32_PM_STOP);
#endif
/* Fall through */
case STATUS_NOT_USED:
periph_clk_dis(APB1, dev->conf->master_rcc_mask);
break;
}
periph_clk_dis(APB1, dev->conf->rcc_mask);
if (_status[get_channel(dev->conf->can)] != STATUS_SLEEP) {
#ifdef STM32_PM_STOP
pm_unblock(STM32_PM_STOP);
#endif
}
_status[get_channel(dev->conf->can)] = STATUS_SLEEP;
if (_status[master_chan] == STATUS_SLEEP) {
enable_int(dev, 1);
}
enable_int(dev, 0);
}
#else
if (_status[get_channel(dev->conf->can)] != STATUS_SLEEP) {
#ifdef STM32_PM_STOP
pm_unblock(STM32_PM_STOP);
#endif
}
_status[get_channel(dev->conf->can)] = STATUS_SLEEP;
periph_clk_dis(APB1, dev->conf->rcc_mask);
gpio_init_int(dev->rx_pin, GPIO_IN, GPIO_FALLING, _wkup_cb, dev);
#endif
irq_restore(irq);
}
static void turn_on(can_t *dev)
{
DEBUG("turn on (%p)\n", (void *)dev);
unsigned irq = irq_disable();
#if CANDEV_STM32_CHAN_NUMOF > 1
if (!is_master(dev)) {
int master_chan = get_channel(get_master(dev));
switch (_status[master_chan]) {
case STATUS_SLEEP:
_status[master_chan] = STATUS_READY_FOR_SLEEP;
disable_int(dev, 1);
#ifdef STM32_PM_STOP
pm_block(STM32_PM_STOP);
#endif
/* Fall through */
case STATUS_NOT_USED:
periph_clk_en(APB1, dev->conf->master_rcc_mask);
break;
}
}
#endif
if (_status[get_channel(dev->conf->can)] == STATUS_SLEEP) {
#ifdef STM32_PM_STOP
pm_block(STM32_PM_STOP);
#endif
disable_int(dev, 0);
periph_clk_en(APB1, dev->conf->rcc_mask);
}
_status[get_channel(dev->conf->can)] = STATUS_ON;
irq_restore(irq);
}
static int _wake_up(can_t *dev)
{
turn_on(dev);
return set_mode(dev->conf->can, MODE_NORMAL);
}
static int _sleep(can_t *dev)
{
int res = set_mode(dev->conf->can, MODE_SLEEP);
turn_off(dev);
return res;
}
static int _set(candev_t *candev, canopt_t opt, void *value, size_t value_len)
{
can_t *dev = (can_t *)candev;
CAN_TypeDef *can = dev->conf->can;
int res = 0;
can_mode_t mode;
switch (opt) {
case CANOPT_BITTIMING:
if (value_len < sizeof(dev->candev.bittiming)) {
res = -EOVERFLOW;
}
else {
memcpy(&dev->candev.bittiming, value, sizeof(dev->candev.bittiming));
mode = get_mode(can);
if (mode == MODE_SLEEP) {
res = _wake_up(dev);
if (res != 0) {
res = -EBUSY;
break;
}
}
res = set_mode(can, MODE_INIT);
if (res == 0) {
set_bit_timing(dev);
res = sizeof(dev->candev.bittiming);
}
if (mode == MODE_SLEEP) {
if (_sleep(dev) < 0) {
res = -EBUSY;
}
}
else if (set_mode(can, mode) < 0) {
res = -EBUSY;
}
}
break;
case CANOPT_STATE:
if (value_len < sizeof(canopt_state_t)) {
res = -EOVERFLOW;
}
else {
switch (*((canopt_state_t *)value)) {
case CANOPT_STATE_OFF:
case CANOPT_STATE_SLEEP:
DEBUG("candev_stm32 %p: power down\n", (void *)dev);
res = _sleep(dev);
break;
case CANOPT_STATE_ON:
DEBUG("candev_stm32 %p: power up\n", (void *)dev);
res = _wake_up(dev);
break;
case CANOPT_STATE_LISTEN_ONLY:
mode = get_mode(can);
res = set_mode(can, MODE_INIT);
can->BTR |= CAN_BTR_SILM;
res += set_mode(can, mode);
break;
}
}
break;
default:
res = -ENOTSUP;
break;
}
return res;
}
#define CAN_ESR_REC_SHIFT 24
#define CAN_ESR_TEC_SHIFT 16
static int _get(candev_t *candev, canopt_t opt, void *value, size_t max_len)
{
can_t *dev = (can_t *)candev;
CAN_TypeDef *can = dev->conf->can;
int res = 0;
switch (opt) {
case CANOPT_BITTIMING:
if (max_len < sizeof(dev->candev.bittiming)) {
res = -EOVERFLOW;
}
else {
memcpy(value, &dev->candev.bittiming, sizeof(dev->candev.bittiming));
res = sizeof(dev->candev.bittiming);
}
break;
case CANOPT_BITTIMING_CONST:
if (max_len < sizeof(bittiming_const)) {
res = -EOVERFLOW;
}
else {
memcpy(value, &bittiming_const, sizeof(bittiming_const));
res = sizeof(bittiming_const);
}
break;
case CANOPT_CLOCK:
if (max_len < sizeof(uint32_t)) {
res = -EOVERFLOW;
}
else {
*((uint32_t *)value) = CLOCK_APB1;
res = sizeof(uint32_t);
}
break;
case CANOPT_RX_FILTERS:
if (max_len % sizeof(struct can_filter) != 0) {
res = -EOVERFLOW;
}
else {
unsigned en_filt = 0;
unsigned base_filter = get_first_filter(dev);
unsigned last_filter = base_filter + get_nb_filter(dev);
for (unsigned i = base_filter; i < last_filter; i++) {
if ((get_master(dev)->FA1R & (1u << i)) == (1u << i)) {
en_filt++;
}
}
if (max_len / sizeof(struct can_filter) < en_filt) {
res = -EOVERFLOW;
}
else {
for (unsigned i = 0; i < en_filt; i++) {
struct can_filter *filter = (struct can_filter *)value + i;
get_can_filter(get_master(
dev), i + base_filter, &filter->can_id,
&filter->can_mask);
}
res = en_filt * sizeof(struct can_filter);
}
}
break;
case CANOPT_TEC:
if (max_len != sizeof(uint16_t)) {
res = -EOVERFLOW;
}
else {
uint16_t *tec = (uint16_t *)value;
*tec = (can->ESR & CAN_ESR_TEC) >> CAN_ESR_TEC_SHIFT;
res = sizeof(uint16_t);
}
break;
case CANOPT_REC:
if (max_len != sizeof(uint16_t)) {
res = -EOVERFLOW;
}
else {
uint16_t *rec = (uint16_t *)value;
*rec = (can->ESR & CAN_ESR_REC) >> CAN_ESR_REC_SHIFT;
res = sizeof(uint16_t);
}
break;
default:
res = -ENOTSUP;
break;
}
return res;
}
static int _set_filter(candev_t *candev, const struct can_filter *filter)
{
can_t *dev = (can_t *)candev;
DEBUG("_set_filter: dev=%p, filter=0x%" PRIx32 "\n", (void *)candev, filter->can_id);
int first_filter = get_first_filter(dev);
int last_filter = first_filter + get_nb_filter(dev);
uint8_t i;
for (i = first_filter; i < last_filter; i++) {
if (!filter_is_set(get_master(dev), i)) {
get_master(dev)->FMR = CAN_FMR_FINIT;
set_filter(get_master(
dev), filter->can_id, filter->can_mask, i, i % CAN_STM32_RX_MAILBOXES);
get_master(dev)->FMR &= ~CAN_FMR_FINIT;
break;
}
}
if (i == last_filter) {
return -EOVERFLOW;
}
return i - first_filter;
}
static int _remove_filter(candev_t *candev, const struct can_filter *filter)
{
can_t *dev = (can_t *)candev;
int first_filter = get_first_filter(dev);
int last_filter = first_filter + get_nb_filter(dev);
uint8_t i;
for (i = first_filter; i < last_filter; i++) {
if (filter_is_set(get_master(dev), i)) {
uint32_t filt, mask;
/* Clear RTR and ERR flags as they are ignored by the set/get filter */
get_can_filter(get_master(dev), i, &filt, &mask);
DEBUG("_remove_filter: filter=0x%" PRIx32 ",0x%" PRIx32 ", nb=%d, "
"dev_filter=0x%" PRIx32 ",0x%" PRIx32 "\n",
filter->can_id, filter->can_mask, (int)i, filt, mask);
if ((filt == filter->can_id) && /* ID match */
/* Filter match (extended case */
(((filt & CAN_EFF_FLAG) &&
((mask & CAN_EFF_MASK) == (filter->can_mask & CAN_EFF_MASK)))
/* Filter match (standard case */
|| (!(filt & CAN_EFF_FLAG) &&
((mask & CAN_SFF_MASK) == (filter->can_mask & CAN_SFF_MASK))))) {
get_master(dev)->FMR = CAN_FMR_FINIT;
unset_filter(get_master(dev), i);
get_master(dev)->FMR &= ~CAN_FMR_FINIT;
break;
}
}
}
if (i == last_filter) {
return -EOVERFLOW;
}
return 0;
}
static void tx_conf(can_t *dev, int mailbox)
{
candev_t *candev = (candev_t *) dev;
const struct can_frame *frame = dev->tx_mailbox[mailbox];
dev->tx_mailbox[mailbox] = NULL;
DEBUG("_tx_conf: device=%p, mb=%d\n", (void *)dev, mailbox);
if (frame && dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_TX_CONFIRMATION,
(void *) frame);
}
}
static void tx_irq_handler(can_t *dev)
{
CAN_TypeDef *can = dev->conf->can;
int flags = dev->isr_flags.isr_tx;
DEBUG("tx irq\n");
if (can->TSR & CAN_TSR_RQCP0) {
if (can->TSR & CAN_TSR_TXOK0) {
dev->isr_flags.isr_tx |= 1;
}
can->TSR |= CAN_TSR_RQCP0;
}
if (can->TSR & CAN_TSR_RQCP1) {
if (can->TSR & CAN_TSR_TXOK1) {
dev->isr_flags.isr_tx |= 2;
}
can->TSR |= CAN_TSR_RQCP1;
}
if (can->TSR & CAN_TSR_RQCP2) {
if (can->TSR & CAN_TSR_TXOK2) {
dev->isr_flags.isr_tx |= 4;
}
can->TSR |= CAN_TSR_RQCP2;
}
if (dev->candev.event_callback && flags != dev->isr_flags.isr_tx) {
dev->candev.event_callback(&(dev->candev), CANDEV_EVENT_ISR, NULL);
}
}
static void tx_isr(can_t *dev)
{
unsigned int irq;
irq = irq_disable();
if (dev->isr_flags.isr_tx & 1) {
dev->isr_flags.isr_tx &= ~1;
irq_restore(irq);
tx_conf(dev, 0);
}
else {
irq_restore(irq);
}
irq = irq_disable();
if (dev->isr_flags.isr_tx & 2) {
dev->isr_flags.isr_tx &= ~2;
irq_restore(irq);
tx_conf(dev, 1);
}
else {
irq_restore(irq);
}
irq = irq_disable();
if (dev->isr_flags.isr_tx & 4) {
dev->isr_flags.isr_tx &= ~4;
irq_restore(irq);
tx_conf(dev, 2);
}
else {
irq_restore(irq);
}
}
static void rx_irq_handler(can_t *dev, int mailbox)
{
CAN_TypeDef *can = dev->conf->can;
candev_t *candev = (candev_t *) dev;
DEBUG("rx irq\n");
if ((can->RF0R & CAN_RF0R_FOVR0) == CAN_RF0R_FOVR0) {
can->RF0R |= CAN_RF0R_FOVR0;
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_RX_ERROR, NULL);
}
return;
}
if ((can->RF1R & CAN_RF1R_FOVR1) == CAN_RF1R_FOVR1) {
can->RF1R |= CAN_RF1R_FOVR1;
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_RX_ERROR, NULL);
}
return;
}
if (!dev->rx_fifo.is_full) {
int i = dev->rx_fifo.write_idx;
read_frame(dev, &(dev->rx_fifo.frame[i]), mailbox);
if (!dev->isr_flags.isr_rx) {
dev->isr_flags.isr_rx |= mailbox + 1;
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_ISR, NULL);
}
}
dev->rx_fifo.write_idx++;
if (dev->rx_fifo.write_idx == CAN_STM32_RX_MAIL_FIFO) {
dev->rx_fifo.write_idx = 0;
}
if (dev->rx_fifo.write_idx == dev->rx_fifo.read_idx) {
dev->rx_fifo.is_full = 1;
}
}
else {
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_RX_ERROR, NULL);
}
}
}
static void rx_isr(can_t *dev)
{
DEBUG("_rx_isr: device=%p\n", (void *)dev);
while (dev->rx_fifo.is_full || dev->rx_fifo.read_idx != dev->rx_fifo.write_idx) {
int i = dev->rx_fifo.read_idx;
if (dev->candev.event_callback) {
dev->candev.event_callback(&dev->candev,
CANDEV_EVENT_RX_INDICATION,
&dev->rx_fifo.frame[i]);
}
dev->rx_fifo.read_idx++;
if (dev->rx_fifo.read_idx == CAN_STM32_RX_MAIL_FIFO) {
dev->rx_fifo.read_idx = 0;
}
dev->rx_fifo.is_full = 0;
}
}
static void sce_irq_handler(can_t *dev)
{
CAN_TypeDef *can = dev->conf->can;
candev_t *candev = (candev_t *) dev;
DEBUG("sce irq: ");
if ((can->MSR & CAN_MSR_ERRI) == CAN_MSR_ERRI) {
can->MSR = CAN_MSR_ERRI;
if ((can->ESR & CAN_ESR_BOFF) == CAN_ESR_BOFF) {
DEBUG("bus-off\n");
if (!dev->conf->abom) {
set_mode(can, MODE_INIT);
}
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_BUS_OFF, NULL);
}
}
else if ((can->ESR & CAN_ESR_EPVF) == CAN_ESR_EPVF) {
DEBUG("error passive\n");
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_ERROR_PASSIVE, NULL);
}
}
else if ((can->ESR & CAN_ESR_EWGF) == CAN_ESR_EWGF) {
DEBUG("error warning\n");
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_ERROR_WARNING, NULL);
}
}
}
else if ((can->MSR & CAN_MSR_WKUI) == CAN_MSR_WKUI) {
can->MSR = CAN_MSR_WKUI;
DEBUG("wakeup\n");
if (dev->candev.event_callback) {
dev->candev.event_callback(candev, CANDEV_EVENT_WAKE_UP, NULL);
}
}
}
#if defined(CPU_FAM_STM32F0)
#define CAN_MSR_INT_MASK 0x0000001C
#define CAN_TSR_INT_MASK 0x000F0F0F
#define CAN_RFxR_INT_MASK 0x0000001B
#define CAN_ESR_INT_MASK 0x00000077
void isr_cec_can(void)
{
DEBUG("bxCAN irq\n");
if ((CAN->ESR & CAN_ESR_INT_MASK) || (CAN->MSR & CAN_MSR_INT_MASK)) {
sce_irq_handler(_can[0]);
}
if (CAN->TSR & CAN_TSR_INT_MASK) {
tx_irq_handler(_can[0]);
}
if (CAN->RF0R & CAN_RFxR_INT_MASK) {
rx_irq_handler(_can[0], 0);
}
if (CAN->RF1R & CAN_RFxR_INT_MASK) {
rx_irq_handler(_can[0], 1);
}
cortexm_isr_end();
}
#else
void ISR_CAN1_TX(void)
{
tx_irq_handler(_can[0]);
cortexm_isr_end();
}
void ISR_CAN1_RX0(void)
{
rx_irq_handler(_can[0], 0);
cortexm_isr_end();
}
void ISR_CAN1_RX1(void)
{
rx_irq_handler(_can[0], 1);
cortexm_isr_end();
}
void ISR_CAN1_SCE(void)
{
sce_irq_handler(_can[0]);
cortexm_isr_end();
}
#if CANDEV_STM32_CHAN_NUMOF > 1
void ISR_CAN2_TX(void)
{
tx_irq_handler(_can[1]);
cortexm_isr_end();
}
void ISR_CAN2_RX0(void)
{
rx_irq_handler(_can[1], 0);
cortexm_isr_end();
}
void ISR_CAN2_RX1(void)
{
rx_irq_handler(_can[1], 1);
cortexm_isr_end();
}
void ISR_CAN2_SCE(void)
{
sce_irq_handler(_can[1]);
cortexm_isr_end();
}
#endif
#if CANDEV_STM32_CHAN_NUMOF > 2
void ISR_CAN3_TX(void)
{
tx_irq_handler(_can[2]);
cortexm_isr_end();
}
void ISR_CAN3_RX0(void)
{
rx_irq_handler(_can[2], 0);
cortexm_isr_end();
}
void ISR_CAN3_RX1(void)
{
rx_irq_handler(_can[2], 1);
cortexm_isr_end();
}
void ISR_CAN3_SCE(void)
{
sce_irq_handler(_can[2]);
cortexm_isr_end();
}
#endif
#endif