1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/sam0_common/periph/flashpage.c

385 lines
10 KiB
C
Raw Normal View History

/*
* Copyright (C) 2016 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_sam0_common
* @ingroup drivers_periph_adc
* @{
*
* @file
* @brief Low-level flash page driver implementation
*
* The sam0 has its flash memory organized in pages and rows, where each row
* consists of 4 pages. While pages are writable one at a time, it is only
* possible to delete a complete row. This implementation abstracts this
* behavior by only writing complete rows at a time, so the FLASHPAGE_SIZE we
* use in RIOT is actually the row size as specified in the datasheet.
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
*
* @}
*/
#include <assert.h>
#include <string.h>
#include "cpu.h"
#include "periph/flashpage.h"
2020-10-22 11:34:00 +02:00
#define ENABLE_DEBUG 0
#include "debug.h"
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
2019-01-27 11:29:35 +01:00
/* Write Quad Word is the only allowed operation on AUX pages */
#if defined(NVMCTRL_CTRLB_CMD_WQW)
#define AUX_CHUNK_SIZE (4 * sizeof(uint32_t))
#elif defined(AUX_PAGE_SIZE)
#define AUX_CHUNK_SIZE AUX_PAGE_SIZE
#else
#define AUX_CHUNK_SIZE FLASH_USER_PAGE_SIZE
#endif
/**
* @brief NVMCTRL selection macros
*/
#ifdef CPU_FAM_SAML11
#define _NVMCTRL NVMCTRL_SEC
#else
#define _NVMCTRL NVMCTRL
#endif
static inline void wait_nvm_is_ready(void)
{
#ifdef NVMCTRL_STATUS_READY
while (!_NVMCTRL->STATUS.bit.READY) {}
#else
while (!_NVMCTRL->INTFLAG.bit.READY) {}
#endif
}
static void _unlock(void)
{
/* remove peripheral access lock for the NVMCTRL peripheral */
#ifdef REG_PAC_WRCTRL
PAC->WRCTRL.reg = (PAC_WRCTRL_KEY_CLR | ID_NVMCTRL);
#else
PAC1->WPCLR.reg = PAC1_WPROT_DEFAULT_VAL;
#endif
}
static void _lock(void)
{
wait_nvm_is_ready();
/* put peripheral access lock for the NVMCTRL peripheral */
#ifdef REG_PAC_WRCTRL
PAC->WRCTRL.reg = (PAC_WRCTRL_KEY_SET | ID_NVMCTRL);
#else
PAC1->WPSET.reg = PAC1_WPROT_DEFAULT_VAL;
#endif
/* cached flash contents may have changed - invalidate cache */
#ifdef CMCC
CMCC->MAINT0.bit.INVALL = 1;
#endif
}
static void _cmd_clear_page_buffer(void)
{
wait_nvm_is_ready();
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_PBC);
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_PBC);
#endif
}
static void _cmd_erase_aux(void)
{
wait_nvm_is_ready();
/* send Erase Page/Auxiliary Row command */
#if defined(NVMCTRL_CTRLB_CMD_EP)
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_EP);
#elif defined(NVMCTRL_CTRLA_CMD_EAR)
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_EAR);
#else
/* SAML1x uses same command for all areas */
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
#endif
}
static void _cmd_erase_row(void)
{
wait_nvm_is_ready();
/* send Row/Block erase command */
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_EB);
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
2019-01-27 11:29:35 +01:00
#endif
}
static void _cmd_write_aux(void)
{
wait_nvm_is_ready();
/* write auxiliary page */
#if defined(NVMCTRL_CTRLA_CMD_WAP)
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WAP);
#elif defined(NVMCTRL_CTRLB_CMD_WQW)
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_WQW);
#else
/* SAML1x uses same command for all areas */
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
#endif
}
static void _cmd_write_page(void)
{
wait_nvm_is_ready();
/* write page */
#ifdef NVMCTRL_CTRLB_CMDEX_KEY
_NVMCTRL->CTRLB.reg = (NVMCTRL_CTRLB_CMDEX_KEY | NVMCTRL_CTRLB_CMD_WP);
2019-01-27 11:29:35 +01:00
#else
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
2019-01-27 11:29:35 +01:00
#endif
}
/* We have to write whole words, but writing 0xFF is basically a no-op
* so fill the unaligned bytes with 0xFF to get a whole extra word.
*/
static uint32_t unaligned_pad_start(const void *_data, uint8_t len)
{
const uint8_t *data = _data;
union {
uint32_t u32;
uint8_t u8[4];
} buffer = {.u32 = ~0};
switch (len) {
case 3:
buffer.u8[1] = *data++;
/* fall-through */
case 2:
buffer.u8[2] = *data++;
/* fall-through */
case 1:
buffer.u8[3] = *data++;
}
return buffer.u32;
}
/* We have to write whole words, but writing 0xFF is basically a no-op
* so fill the unaligned bytes with 0xFF to get a whole extra word.
*/
static uint32_t unaligned_pad_end(const void *_data, uint8_t len)
{
const uint8_t *data = _data;
union {
uint32_t u32;
uint8_t u8[4];
} buffer = {.u32 = ~0};
switch (len) {
case 3:
buffer.u8[2] = data[2];
/* fall-through */
case 2:
buffer.u8[1] = data[1];
/* fall-through */
case 1:
buffer.u8[0] = data[0];
}
return buffer.u32;
}
static void _write_page(void* dst, const void *data, size_t len, void (*cmd_write)(void))
{
/* set bytes in the first, unaligned word */
uint8_t unaligned_start = (4 - ((uintptr_t)dst & 0x3)) & 0x3;
len -= unaligned_start;
/* set bytes in the last, unaligned word */
uint8_t unaligned_end = len & 0x3;
len -= unaligned_end;
/* word align destination address */
uint32_t *dst32 = (void*)((uintptr_t)dst & ~0x3);
_unlock();
_cmd_clear_page_buffer();
/* write the first, unaligned bytes */
if (unaligned_start) {
*dst32++ = unaligned_pad_start(data, unaligned_start);
data = (uint8_t*)data + unaligned_start;
}
/* copy whole words */
const uint32_t *data32 = data;
while (len) {
*dst32++ = *data32++;
len -= sizeof(uint32_t);
2019-01-27 11:29:35 +01:00
}
/* write the last, unaligned bytes */
if (unaligned_end) {
*dst32 = unaligned_pad_end(data32, unaligned_end);
}
cmd_write();
_lock();
}
static void _erase_page(void* page, void (*cmd_erase)(void))
{
uintptr_t page_addr = (uintptr_t)page;
/* erase given page (the ADDR register uses 16-bit addresses) */
_unlock();
/* ADDR drives the hardware (16-bit) address to the NVM when a command is executed using CMDEX.
* 8-bit addresses must be shifted one bit to the right before writing to this register.
*/
#if defined(CPU_COMMON_SAMD21) || defined(CPU_COMMON_SAML21)
page_addr >>= 1;
2019-01-27 11:29:35 +01:00
#endif
/* set Row/Block start address */
_NVMCTRL->ADDR.reg = page_addr;
cmd_erase();
_lock();
}
static void _write_row(uint8_t *dst, const void *_data, size_t len, size_t chunk_size,
void (*cmd_write)(void))
{
const uint8_t *data = _data;
size_t next_chunk = chunk_size - ((uintptr_t)dst & (chunk_size - 1));
next_chunk = next_chunk ? next_chunk : chunk_size;
while (len) {
size_t chunk = MIN(len, next_chunk);
next_chunk = chunk_size;
_write_page(dst, data, chunk, cmd_write);
data += chunk;
dst += chunk;
len -= chunk;
}
2019-01-27 11:29:35 +01:00
}
void flashpage_erase(unsigned page)
{
assert((unsigned)page < FLASHPAGE_NUMOF);
_erase_page(flashpage_addr(page), _cmd_erase_row);
}
void flashpage_write(void *target_addr, const void *data, size_t len)
2019-01-27 11:29:35 +01:00
{
/* ensure the length doesn't exceed the actual flash size */
assert(((unsigned)target_addr + len) <=
(CPU_FLASH_BASE + (FLASHPAGE_SIZE * FLASHPAGE_NUMOF)));
_write_row(target_addr, data, len, NVMCTRL_PAGE_SIZE, _cmd_write_page);
}
void sam0_flashpage_aux_write(uint32_t offset, const void *data, size_t len)
{
uintptr_t dst = NVMCTRL_USER + sizeof(nvm_user_page_t) + offset;
#ifdef FLASH_USER_PAGE_SIZE
assert(dst + len <= NVMCTRL_USER + FLASH_USER_PAGE_SIZE);
#else
assert(dst + len <= NVMCTRL_USER + AUX_PAGE_SIZE * AUX_NB_OF_PAGES);
#endif
_write_row((void*)dst, data, len, AUX_CHUNK_SIZE, _cmd_write_aux);
}
void sam0_flashpage_aux_reset(const nvm_user_page_t *cfg)
{
nvm_user_page_t old_cfg;
if (cfg == NULL) {
cfg = &old_cfg;
memcpy(&old_cfg, (void*)NVMCTRL_USER, sizeof(*cfg));
}
_erase_page((void*)NVMCTRL_USER, _cmd_erase_aux);
_write_row((void*)NVMCTRL_USER, cfg, sizeof(*cfg), AUX_CHUNK_SIZE, _cmd_write_aux);
}
2019-01-27 11:29:35 +01:00
#ifdef FLASHPAGE_RWWEE_NUMOF
static void _cmd_erase_row_rwwee(void)
2019-01-27 11:29:35 +01:00
{
wait_nvm_is_ready();
/* send erase row command */
#ifdef NVMCTRL_CTRLA_CMD_RWWEEER
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_RWWEEER);
#else
/* SAML1X use the same Erase command for both flash memories */
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_ER);
#endif
}
static void _cmd_write_page_rwwee(void)
{
wait_nvm_is_ready();
2019-01-27 11:29:35 +01:00
/* write page */
#ifdef NVMCTRL_CTRLA_CMD_RWWEEWP
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_RWWEEWP);
#else
/* SAML1X use the same Write Page command for both flash memories */
_NVMCTRL->CTRLA.reg = (NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP);
#endif
2019-01-27 11:29:35 +01:00
}
void flashpage_rwwee_write(void *target_addr, const void *data, size_t len)
2019-01-27 11:29:35 +01:00
{
assert(((unsigned)target_addr + len) <=
(CPU_FLASH_RWWEE_BASE + (FLASHPAGE_SIZE * FLASHPAGE_RWWEE_NUMOF)));
_write_row(target_addr, data, len, NVMCTRL_PAGE_SIZE, _cmd_write_page_rwwee);
2019-01-27 11:29:35 +01:00
}
void flashpage_rwwee_write_page(unsigned page, const void *data)
2019-01-27 11:29:35 +01:00
{
assert((unsigned)page < FLASHPAGE_RWWEE_NUMOF);
2019-01-27 11:29:35 +01:00
_erase_page(flashpage_rwwee_addr(page), _cmd_erase_row_rwwee);
if (data == NULL) {
return;
}
/* One RIOT page is FLASHPAGE_PAGES_PER_ROW SAM0 flash pages (a row) as
* defined in the file cpu/sam0_common/include/cpu_conf.h, therefore we
* have to split the write into FLASHPAGE_PAGES_PER_ROW raw calls
* underneath, each writing a physical page in chunks of 4 bytes (see
* flashpage_write_raw)
* The erasing is done once as a full row is always erased.
*/
_write_row(flashpage_rwwee_addr(page), data, FLASHPAGE_SIZE, NVMCTRL_PAGE_SIZE,
_cmd_write_page_rwwee);
2019-01-27 11:29:35 +01:00
}
#endif /* FLASHPAGE_RWWEE_NUMOF */