1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/cpu/kinetis/periph/timer.c

785 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (C) 2016 Eistec AB
* Copyright (C) 2014 Freie Universität Berlin
* Copyright (C) 2014-2015 PHYTEC Messtechnik GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup cpu_kinetis
* @ingroup drivers_periph_timer
*
* @{
*
* @file
* @brief Low-level timer driver implementation
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Johann Fischer <j.fischer@phytec.de>
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
*
* @}
*/
#include <stdlib.h>
#include "cpu.h"
2017-04-15 14:57:02 +02:00
#include "bit.h"
#include "board.h"
#include "periph_conf.h"
#include "periph/timer.h"
#ifdef PIT_LTMR64H_LTH_MASK
/* The KW41Z PIT module provides only one IRQ for all PIT channels combined. */
/* TODO: find a better way to distinguish which Kinetis CPUs have separate PIT
* channel interrupts */
#define KINETIS_PIT_COMBINED_IRQ 1
#else
/* K60, K64F etc have a separate IRQ number for each PIT channel */
#define KINETIS_PIT_COMBINED_IRQ 0
#endif
#define ENABLE_DEBUG (0)
#include "debug.h"
#define PIT_MAX_VALUE (PIT_LDVAL_TSV_MASK >> PIT_LDVAL_TSV_SHIFT)
#define LPTMR_MAX_VALUE (LPTMR_CNR_COUNTER_MASK >> LPTMR_CNR_COUNTER_SHIFT)
#if TIMER_NUMOF != (PIT_NUMOF + LPTMR_NUMOF)
#error TIMER_NUMOF should be the total of PIT and LPTMR timers in the system
#endif
/**
* @brief The number of ticks that will be lost when setting a new target in the LPTMR
*
* The counter will otherwise drop ticks when setting new timeouts.
*/
#define LPTMR_RELOAD_OVERHEAD 1
/* PIT channel state */
typedef struct {
timer_isr_ctx_t isr_ctx;
uint32_t count;
uint32_t tctrl;
uint32_t ldval;
} pit_t;
/* LPTMR state */
typedef struct {
timer_isr_ctx_t isr_ctx;
uint32_t cnr;
uint32_t cmr;
uint32_t running;
} lptmr_t;
static const pit_conf_t pit_config[PIT_NUMOF] = PIT_CONFIG;
static const lptmr_conf_t lptmr_config[LPTMR_NUMOF] = LPTMR_CONFIG;
static pit_t pit[PIT_NUMOF];
static lptmr_t lptmr[LPTMR_NUMOF];
/**
* @brief Find out whether a given timer is a LPTMR or a PIT timer
*/
static inline unsigned int _timer_variant(tim_t dev) {
if ((unsigned int) dev >= PIT_NUMOF) {
return TIMER_LPTMR;
}
else {
return TIMER_PIT;
}
}
/**
* @brief Find device index in the pit_config array
*/
static inline unsigned int _pit_index(tim_t dev) {
return ((unsigned int)dev) - TIMER_DEV(0);
}
/**
* @brief Get TIMER_x enum value from PIT device index
*/
static inline tim_t _pit_tim_t(uint8_t dev) {
return (tim_t)(((unsigned int)TIMER_DEV(0)) + dev);
}
/**
* @brief Find device index in the lptmr_config array
*/
static inline unsigned int _lptmr_index(tim_t dev) {
return ((unsigned int)dev) - TIMER_DEV(0) - PIT_NUMOF;
}
#if defined(LPTMR_ISR_0) || defined(LPTMR_ISR_1)
/**
* @brief Get TIMER_x enum value from LPTMR device index
*/
static inline tim_t _lptmr_tim_t(uint8_t dev) {
return (tim_t)(((unsigned int)TIMER_DEV(0)) + PIT_NUMOF + dev);
}
#endif /* defined(LPTMR_ISR_0) || defined(LPTMR_ISR_1) */
/* ****** PIT module functions ****** */
/* Forward declarations */
static inline int pit_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg);
static inline int pit_set(uint8_t dev, uint32_t timeout);
static inline int pit_set_absolute(uint8_t dev, uint32_t target);
static inline int pit_clear(uint8_t dev);
static inline uint32_t pit_read(uint8_t dev);
static inline void pit_start(uint8_t dev);
static inline void pit_stop(uint8_t dev);
static inline void pit_irq_handler(tim_t dev);
static inline int pit_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg)
{
2017-04-15 14:57:02 +02:00
/* Turn on module clock gate */
PIT_CLKEN();
/* Completely disable the module before messing with the settings */
PIT->MCR = PIT_MCR_MDIS_MASK;
/* Disable IRQs to avoid race with ISR */
unsigned int mask = irq_disable();
uint8_t count_ch = pit_config[dev].count_ch;
/* Clear configuration */
PIT->CHANNEL[count_ch].TCTRL = 0;
/* Freeze timers during debug break, resume normal operations (clear MDIS) */
PIT->MCR = PIT_MCR_FRZ_MASK;
/* set callback function */
pit[dev].isr_ctx.cb = cb;
pit[dev].isr_ctx.arg = arg;
/* Clear IRQ flag */
PIT->CHANNEL[count_ch].TFLG = PIT_TFLG_TIF_MASK;
#if KINETIS_PIT_COMBINED_IRQ
/* One IRQ for all channels */
/* NVIC_ClearPendingIRQ(PIT_IRQn); */ /* does it make sense to clear this IRQ flag? */
NVIC_EnableIRQ(PIT_IRQn);
#else
/* Refactor the below lines if there are any CPUs where the PIT IRQs are not sequential */
NVIC_ClearPendingIRQ(PIT0_IRQn + count_ch);
NVIC_EnableIRQ(PIT0_IRQn + count_ch);
#endif
/* Reset up-counter */
pit[dev].count = PIT_MAX_VALUE;
PIT->CHANNEL[count_ch].LDVAL = PIT_MAX_VALUE;
/* Disable prescaler channel */
PIT->CHANNEL[pit_config[dev].prescaler_ch].TCTRL = 0x0;
/* Load prescaler value */
PIT->CHANNEL[pit_config[dev].prescaler_ch].LDVAL = (PIT_BASECLOCK / freq) - 1;
/* Start the prescaler counter */
PIT->CHANNEL[pit_config[dev].prescaler_ch].TCTRL = (PIT_TCTRL_TEN_MASK);
PIT->CHANNEL[count_ch].TCTRL = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
irq_restore(mask);
return 0;
}
static inline int pit_set(uint8_t dev, uint32_t timeout)
{
const uint8_t ch = pit_config[dev].count_ch;
/* Disable IRQs to minimize the number of lost ticks */
unsigned int mask = irq_disable();
/* Subtract if there was anything left on the counter */
pit[dev].count -= PIT->CHANNEL[ch].CVAL;
/* Set new timeout */
PIT->CHANNEL[ch].TCTRL = 0;
PIT->CHANNEL[ch].LDVAL = timeout;
PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;
PIT->CHANNEL[ch].TCTRL = PIT_TCTRL_TIE_MASK | PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
/* Add the new timeout offset to the up-counter */
pit[dev].count += timeout;
/* Set the timer to reload the maximum value to be able to count the number
* of overflow ticks inside the ISR */
PIT->CHANNEL[ch].LDVAL = PIT_MAX_VALUE;
irq_restore(mask);
return 0;
}
static inline int pit_set_absolute(uint8_t dev, uint32_t target)
{
uint8_t ch = pit_config[dev].count_ch;
/* Disable IRQs to minimize the number of lost ticks */
unsigned int mask = irq_disable();
uint32_t now = pit[dev].count - PIT->CHANNEL[ch].CVAL;
uint32_t offset = target - now;
/* Set new timeout */
PIT->CHANNEL[ch].TCTRL = 0;
PIT->CHANNEL[ch].LDVAL = offset;
PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;
PIT->CHANNEL[ch].TCTRL = PIT_TCTRL_TIE_MASK | PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
/* Set the new target time in the up-counter */
pit[dev].count = target;
/* Set the timer to reload the maximum value to be able to count the number
* of overflow ticks inside the ISR */
PIT->CHANNEL[ch].LDVAL = PIT_MAX_VALUE;
irq_restore(mask);
return 0;
}
static inline int pit_clear(uint8_t dev)
{
uint8_t ch = pit_config[dev].count_ch;
/* Disable IRQs to minimize the number of lost ticks */
unsigned int mask = irq_disable();
/* Subtract if there was anything left on the counter */
pit[dev].count -= PIT->CHANNEL[ch].CVAL;
/* No need to add PIT_MAX_VALUE + 1 to the counter because of modulo 2**32 */
/* Set a long timeout */
PIT->CHANNEL[ch].TCTRL = 0;
PIT->CHANNEL[ch].LDVAL = PIT_MAX_VALUE;
PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;
PIT->CHANNEL[ch].TCTRL = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
irq_restore(mask);
return 0;
}
/* CVAL is unreliable if the timer is not enabled (TCTRL_TEN bit clear),
* by stopping the prescaler instead of the counter channel we avoid this issue,
* and additionally do not need to worry about saving the control registers or
* recomputing the target time when starting the timer */
static inline uint32_t pit_read(uint8_t dev)
{
uint8_t ch = pit_config[dev].count_ch;
return pit[dev].count - PIT->CHANNEL[ch].CVAL;
}
static inline void pit_start(uint8_t dev)
{
uint8_t ch = pit_config[dev].prescaler_ch;
PIT->CHANNEL[ch].TCTRL = PIT_TCTRL_TEN_MASK;
}
static inline void pit_stop(uint8_t dev)
{
uint8_t ch = pit_config[dev].prescaler_ch;
PIT->CHANNEL[ch].TCTRL = 0;
}
static inline void pit_irq_handler(tim_t dev)
{
uint8_t ch = pit_config[_pit_index(dev)].count_ch;
pit_t *pit_ctx = &pit[_pit_index(dev)];
if (!PIT->CHANNEL[ch].TFLG) {
DEBUG("PIT%u!TFLG\n", (unsigned)dev);
return;
}
/* Add the overflow amount to the counter before resetting */
/* (this may be > 0 if the IRQ handler was delayed e.g. by irq_disable etc.) */
pit_ctx->count += PIT->CHANNEL[ch].LDVAL - PIT->CHANNEL[ch].CVAL;
/* inline pit_clear */
PIT->CHANNEL[ch].TCTRL = 0;
PIT->CHANNEL[ch].LDVAL = PIT_MAX_VALUE;
PIT->CHANNEL[ch].TFLG = PIT_TFLG_TIF_MASK;
PIT->CHANNEL[ch].TCTRL = PIT_TCTRL_CHN_MASK | PIT_TCTRL_TEN_MASK;
if (pit_ctx->isr_ctx.cb != NULL) {
pit_ctx->isr_ctx.cb(pit_ctx->isr_ctx.arg, 0);
}
2016-11-30 18:26:05 +01:00
cortexm_isr_end();
}
/* ****** LPTMR module functions ****** */
/* Forward declarations */
static inline int lptmr_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg);
static inline int lptmr_set(uint8_t dev, uint16_t timeout);
static inline int lptmr_set_absolute(uint8_t dev, uint16_t target);
static inline int lptmr_clear(uint8_t dev);
static inline uint16_t lptmr_read(uint8_t dev);
static inline void lptmr_start(uint8_t dev);
static inline void lptmr_stop(uint8_t dev);
#if defined(LPTMR_ISR_0) || defined(LPTMR_ISR_1)
static inline void lptmr_irq_handler(tim_t tim);
#endif
static inline void _lptmr_set_cb_config(uint8_t dev, timer_cb_t cb, void *arg)
{
/* set callback function */
lptmr[dev].isr_ctx.cb = cb;
lptmr[dev].isr_ctx.arg = arg;
}
/**
* @brief Compute the LPTMR prescaler setting, see reference manual for details
*/
static inline int32_t _lptmr_compute_prescaler(uint8_t dev, uint32_t freq) {
uint32_t prescale = 0;
if ((freq > lptmr_config[dev].base_freq) || (freq == 0)) {
/* Frequency out of range */
return -1;
}
while (freq < lptmr_config[dev].base_freq){
++prescale;
freq <<= 1;
}
if (freq != lptmr_config[dev].base_freq) {
/* freq was not a power of two division of base_freq */
return -2;
}
if (prescale == 0) {
/* Prescaler bypass enabled */
return LPTMR_PSR_PBYP_MASK;
}
/* LPTMR_PSR_PRESCALE == 0 yields base_freq / 2,
* LPTMR_PSR_PRESCALE == 1 yields base_freq / 4 etc.. */
return LPTMR_PSR_PRESCALE(prescale - 1);
}
static inline int lptmr_init(uint8_t dev, uint32_t freq, timer_cb_t cb, void *arg)
{
int32_t prescale = _lptmr_compute_prescaler(dev, freq);
if (prescale < 0) {
return -1;
}
LPTMR_Type *hw = lptmr_config[dev].dev;
/* Disable IRQs to avoid race with ISR */
unsigned int mask = irq_disable();
/* Turn on module clock */
2017-04-15 14:57:02 +02:00
LPTMR_CLKEN();
/* Completely disable the module before messing with the settings */
hw->CSR = 0;
/* select clock source and configure prescaler */
hw->PSR = LPTMR_PSR_PCS(lptmr_config[dev].src) | ((uint32_t)prescale);
/* Enable IRQs on the counting channel */
2017-04-15 14:57:02 +02:00
NVIC_ClearPendingIRQ(lptmr_config[dev].irqn);
NVIC_EnableIRQ(lptmr_config[dev].irqn);
_lptmr_set_cb_config(dev, cb, arg);
/* Reset state */
lptmr[dev].running = 1;
lptmr[dev].cnr = 0;
lptmr[dev].cmr = 0;
hw->CMR = 0;
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK;
irq_restore(mask);
return 0;
}
static inline uint16_t lptmr_read(uint8_t dev)
{
LPTMR_Type *hw = lptmr_config[dev].dev;
/* latch the current timer value into CNR */
hw->CNR = 0;
return lptmr[dev].cnr + hw->CNR;
}
/**
* @brief Reload the timer with the given timeout, or spin if timeout is too small
*
* @pre IRQs masked, timer running
*/
static inline void lptmr_reload_or_spin(uint8_t dev, uint16_t timeout)
{
LPTMR_Type *hw = lptmr_config[dev].dev;
/* Disable timer and set target, 1 to 2 ticks will be dropped by the
* hardware during the disable-enable cycle */
/* Disable the timer interrupt first */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK;
if (timeout <= LPTMR_RELOAD_OVERHEAD) {
/* we spin if the timeout is too short to reload the timer */
hw->CNR = 0;
uint16_t cnr_begin = hw->CNR;
while ((hw->CNR - cnr_begin) <= timeout) {
hw->CNR = 0;
}
/* Emulate IRQ handler behaviour */
lptmr[dev].running = 0;
if (lptmr[dev].isr_ctx.cb != NULL) {
lptmr[dev].isr_ctx.cb(lptmr[dev].isr_ctx.arg, 0);
}
thread_yield_higher();
return;
}
/* Update reference */
hw->CNR = 0;
lptmr[dev].cnr += hw->CNR + LPTMR_RELOAD_OVERHEAD;
/* Disable timer */
hw->CSR = 0;
hw->CMR = timeout - LPTMR_RELOAD_OVERHEAD;
/* Enable timer and IRQ */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK | LPTMR_CSR_TIE_MASK;
}
static inline int lptmr_set(uint8_t dev, uint16_t timeout)
{
LPTMR_Type *hw = lptmr_config[dev].dev;
/* Disable IRQs to minimize jitter */
unsigned int mask = irq_disable();
lptmr[dev].running = 1;
if (!(hw->CSR & LPTMR_CSR_TEN_MASK)) {
/* Timer is stopped, only update target */
if (timeout > LPTMR_RELOAD_OVERHEAD) {
/* Compensate for the reload delay */
lptmr[dev].cmr = timeout - LPTMR_RELOAD_OVERHEAD;
}
else {
lptmr[dev].cmr = 0;
}
}
else if (hw->CSR & LPTMR_CSR_TCF_MASK) {
/* TCF is set, safe to update CMR live */
hw->CNR = 0;
hw->CMR = timeout + hw->CNR;
/* cppcheck-suppress selfAssignment
* Clear IRQ flags */
hw->CSR = hw->CSR;
/* Enable timer and IRQ */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK | LPTMR_CSR_TIE_MASK;
}
else {
lptmr_reload_or_spin(dev, timeout);
}
irq_restore(mask);
return 1;
}
static inline int lptmr_set_absolute(uint8_t dev, uint16_t target)
{
LPTMR_Type *hw = lptmr_config[dev].dev;
/* Disable IRQs to minimize jitter */
unsigned int mask = irq_disable();
lptmr[dev].running = 1;
if (!(hw->CSR & LPTMR_CSR_TEN_MASK)) {
/* Timer is stopped, only update target */
uint16_t timeout = target - lptmr[dev].cnr;
if (timeout > LPTMR_RELOAD_OVERHEAD) {
/* Compensate for the reload delay */
lptmr[dev].cmr = timeout - LPTMR_RELOAD_OVERHEAD;
}
else {
lptmr[dev].cmr = 0;
}
}
else if (hw->CSR & LPTMR_CSR_TCF_MASK) {
/* TCF is set, safe to update CMR live */
hw->CMR = target - lptmr[dev].cnr;
/* cppcheck-suppress selfAssignment
* Clear IRQ flags */
hw->CSR = hw->CSR;
/* Enable timer and IRQ */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK | LPTMR_CSR_TIE_MASK;
}
else {
uint16_t timeout = target - lptmr_read(dev);
lptmr_reload_or_spin(dev, timeout);
}
irq_restore(mask);
return 1;
}
static inline int lptmr_clear(uint8_t dev)
{
/* Disable IRQs to minimize jitter */
LPTMR_Type *hw = lptmr_config[dev].dev;
unsigned int mask = irq_disable();
if (!lptmr[dev].running) {
/* Already clear */
irq_restore(mask);
return 1;
}
lptmr[dev].running = 0;
if (!(hw->CSR & LPTMR_CSR_TEN_MASK)) {
/* Timer is stopped */
irq_restore(mask);
return 1;
}
/* Disable interrupt, enable timer */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK;
/* Clear IRQ if it occurred during this function */
NVIC_ClearPendingIRQ(lptmr_config[dev].irqn);
irq_restore(mask);
return 1;
}
static inline void lptmr_start(uint8_t dev)
{
LPTMR_Type *hw = lptmr_config[dev].dev;
if (hw->CSR & LPTMR_CSR_TEN_MASK) {
/* Timer is running */
return;
}
/* Disable IRQs to avoid race with ISR */
unsigned int mask = irq_disable();
/* ensure hardware is reset */
hw->CSR = 0;
if (lptmr[dev].running) {
/* set target */
hw->CMR = lptmr[dev].cmr;
/* enable interrupt and start timer */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK | LPTMR_CSR_TIE_MASK;
}
else {
/* no target */
hw->CMR = 0;
/* Disable interrupt, enable timer */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK;
}
/* compensate for the reload delay when starting the timer */
lptmr[dev].cnr += LPTMR_RELOAD_OVERHEAD;
irq_restore(mask);
}
static inline void lptmr_stop(uint8_t dev)
{
/* Disable IRQs to avoid race with ISR */
unsigned int mask = irq_disable();
LPTMR_Type *hw = lptmr_config[dev].dev;
if (!(hw->CSR & LPTMR_CSR_TEN_MASK)) {
/* Timer is already stopped */
return;
}
/* Update state */
/* Latch counter value */
hw->CNR = 0;
lptmr[dev].cnr += hw->CNR;
uint16_t timeout = hw->CMR - hw->CNR;
/* Disable timer */
hw->CSR = 0;
if (timeout > LPTMR_RELOAD_OVERHEAD) {
/* Compensate for the delay in reloading */
lptmr[dev].cmr = timeout - LPTMR_RELOAD_OVERHEAD;
}
else {
lptmr[dev].cmr = timeout;
}
/* Clear any pending IRQ */
2017-04-15 14:57:02 +02:00
NVIC_ClearPendingIRQ(lptmr_config[dev].irqn);
irq_restore(mask);
}
#if defined(LPTMR_ISR_0) || defined(LPTMR_ISR_1)
static inline void lptmr_irq_handler(tim_t tim)
{
uint8_t dev = _lptmr_index(tim);
LPTMR_Type *hw = lptmr_config[dev].dev;
lptmr[dev].running = 0;
/* Disable interrupt generation, keep timer running */
/* Do not clear TCF flag here, it is required for writing CMR without
* disabling timer first */
hw->CSR = LPTMR_CSR_TEN_MASK | LPTMR_CSR_TFC_MASK;
if (lptmr[dev].isr_ctx.cb != NULL) {
lptmr[dev].isr_ctx.cb(lptmr[dev].isr_ctx.arg, 0);
}
2016-11-30 18:26:05 +01:00
cortexm_isr_end();
}
#endif /* defined(LPTMR_ISR_0) || defined(LPTMR_ISR_1) */
/* ****** Common timer API functions ****** */
int timer_init(tim_t dev, unsigned long freq, timer_cb_t cb, void *arg)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_init(_pit_index(dev), freq, cb, arg);
case TIMER_LPTMR:
return lptmr_init(_lptmr_index(dev), freq, cb, arg);
default:
return -1;
}
}
int timer_set(tim_t dev, int channel, unsigned int timeout)
{
if (channel != 0) {
/* only one channel is supported */
return -1;
}
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_set(_pit_index(dev), timeout);
case TIMER_LPTMR:
return lptmr_set(_lptmr_index(dev), timeout);
default:
return -1;
}
}
int timer_set_absolute(tim_t dev, int channel, unsigned int target)
{
if (channel != 0) {
/* only one channel is supported */
return -1;
}
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_set_absolute(_pit_index(dev), target);
case TIMER_LPTMR:
return lptmr_set_absolute(_lptmr_index(dev), target);;
default:
return -1;
}
return 0;
}
int timer_clear(tim_t dev, int channel)
{
if (channel != 0) {
/* only one channel is supported */
return -1;
}
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return -1;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_clear(_pit_index(dev));
case TIMER_LPTMR:
return lptmr_clear(_lptmr_index(dev));
default:
return -1;
}
return 0;
}
unsigned int timer_read(tim_t dev)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return 0;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
return pit_read(_pit_index(dev));
case TIMER_LPTMR:
return lptmr_read(_lptmr_index(dev));
default:
return 0;
}
}
void timer_start(tim_t dev)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
pit_start(_pit_index(dev));
return;
case TIMER_LPTMR:
lptmr_start(_lptmr_index(dev));
return;
default:
return;
}
}
void timer_stop(tim_t dev)
{
if ((unsigned int)dev >= TIMER_NUMOF) {
/* invalid timer */
return;
}
/* demultiplex to handle two types of hardware timers */
switch (_timer_variant(dev)) {
case TIMER_PIT:
pit_stop(_pit_index(dev));
return;
case TIMER_LPTMR:
lptmr_stop(_lptmr_index(dev));
return;
default:
return;
}
}
/* ****** ISR instances ****** */
void isr_pit(void)
{
/* Some of the lower end Kinetis CPUs combine the individual PIT interrupt
* flags into a single NVIC IRQ signal. This means that software needs to
* test which timer(s) went off when an IRQ occurs. */
for (size_t i = 0; i < PIT_NUMOF; ++i) {
if (PIT->CHANNEL[pit_config[i].count_ch].TCTRL & PIT_TCTRL_TIE_MASK) {
/* Interrupt is enabled */
if (PIT->CHANNEL[pit_config[i].count_ch].TFLG) {
/* Timer interrupt flag is set */
pit_irq_handler(_pit_tim_t(i));
}
}
}
}
#ifdef PIT_ISR_0
void PIT_ISR_0(void)
{
pit_irq_handler(_pit_tim_t(0));
}
#endif
#ifdef PIT_ISR_1
void PIT_ISR_1(void)
{
pit_irq_handler(_pit_tim_t(1));
}
#endif
#ifdef PIT_ISR_2
void PIT_ISR_2(void)
{
pit_irq_handler(_pit_tim_t(2));
}
#endif
#ifdef PIT_ISR_3
void PIT_ISR_3(void)
{
pit_irq_handler(_pit_tim_t(3));
}
#endif
#ifdef LPTMR_ISR_0
void LPTMR_ISR_0(void)
{
lptmr_irq_handler(_lptmr_tim_t(0));
}
#endif
#ifdef LPTMR_ISR_1
void LPTMR_ISR_1(void)
{
lptmr_irq_handler(_lptmr_tim_t(1));
}
#endif