1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/at86rf215/at86rf215.c

383 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (C) 2019 ML!PA Consulting GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup drivers_at86rf215
* @{
*
* @file
* @brief Implementation of public functions for AT86RF215 driver
*
* @author Benjamin Valentin <benjamin.valentin@ml-pa.com>
* @}
*/
#include "board.h"
#include "byteorder.h"
#include "net/ieee802154.h"
#include "net/gnrc.h"
#include "unaligned.h"
#include "at86rf215_internal.h"
#include "at86rf215_netdev.h"
#include "kernel_defines.h"
2020-10-22 11:34:31 +02:00
#define ENABLE_DEBUG 0
#include "debug.h"
static void _setup_interface(at86rf215_t *dev, const at86rf215_params_t *params, uint8_t index)
{
netdev_t *netdev = (netdev_t *)dev;
netdev->driver = &at86rf215_driver;
dev->params = *params;
dev->state = AT86RF215_STATE_OFF;
netdev_register(netdev, NETDEV_AT86RF215, index);
}
void at86rf215_setup(at86rf215_t *dev_09, at86rf215_t *dev_24, const at86rf215_params_t *params, uint8_t index)
{
/* configure the sub-GHz interface */
if (dev_09) {
dev_09->RF = &RF09_regs;
dev_09->BBC = &BBC0_regs;
_setup_interface(dev_09, params, 2 * index);
dev_09->sibling = dev_24;
}
/* configure the 2.4 GHz interface */
if (dev_24) {
dev_24->RF = &RF24_regs;
dev_24->BBC = &BBC1_regs;
_setup_interface(dev_24, params, 2 * index + 1);
dev_24->sibling = dev_09;
}
}
void at86rf215_reset_and_cfg(at86rf215_t *dev)
{
netdev_ieee802154_reset(&dev->netdev);
/* set device address */
netdev_ieee802154_setup(&dev->netdev);
if (is_subGHz(dev)) {
dev->netdev.chan = CONFIG_AT86RF215_DEFAULT_SUBGHZ_CHANNEL;
} else {
dev->netdev.chan = CONFIG_AT86RF215_DEFAULT_CHANNEL;
}
dev->netdev.pan = CONFIG_IEEE802154_DEFAULT_PANID;
/* set default options */
dev->retries_max = AT86RF215_RETRIES_MAX_DEFAULT;
dev->csma_retries_max = AT86RF215_CSMA_RETRIES_MAX_DEFAULT;
dev->csma_maxbe = AT86RF215_CSMA_MAX_BE_DEFAULT;
dev->csma_minbe = AT86RF215_CSMA_MIN_BE_DEFAULT;
dev->flags |= AT86RF215_OPT_AUTOACK
| AT86RF215_OPT_CSMA
#if CONFIG_AT86RF215_RPC
| AT86RF215_OPT_RPC
#endif
;
/* apply the configuration */
at86rf215_reset(dev);
/* default to requesting ACKs, just like at86rf2xx */
const netopt_enable_t enable = NETOPT_ENABLE;
netdev_ieee802154_set(&dev->netdev, NETOPT_ACK_REQ, &enable, sizeof(enable));
/* enable RX start IRQs */
at86rf215_reg_or(dev, dev->BBC->RG_IRQM, BB_IRQ_RXAM);
}
void at86rf215_reset(at86rf215_t *dev)
{
uint8_t reg;
dev->state = AT86RF215_STATE_OFF;
/* Reset state machine to ensure a known state */
at86rf215_rf_cmd(dev, CMD_RF_TRXOFF);
at86rf215_await_state(dev, RF_STATE_TRXOFF);
if (!dev->sibling) {
/* disable 2.4-GHz IRQs if the interface is not enabled */
if (is_subGHz(dev)) {
at86rf215_reg_write(dev, RG_BBC1_IRQM, 0);
at86rf215_reg_write(dev, RG_RF24_IRQM, 0);
at86rf215_reg_write(dev, RG_RF24_CMD, CMD_RF_SLEEP);
/* disable sub-GHz IRQs if the interface is not enabled */
} else {
at86rf215_reg_write(dev, RG_BBC0_IRQM, 0);
at86rf215_reg_write(dev, RG_RF09_IRQM, 0);
at86rf215_reg_write(dev, RG_RF09_CMD, CMD_RF_SLEEP);
}
}
/* disable clock output */
if (!IS_ACTIVE(CONFIG_AT86RF215_USE_CLOCK_OUTPUT)){
at86rf215_reg_write(dev, RG_RF_CLKO, 0);
}
/* allow to configure board-specific trim */
#ifdef CONFIG_AT86RF215_TRIM_VAL
at86rf215_set_trim(dev, CONFIG_AT86RF215_TRIM_VAL);
#endif
/* enable TXFE & RXFE IRQ */
at86rf215_reg_write(dev, dev->BBC->RG_IRQM, BB_IRQ_TXFE | BB_IRQ_RXFE);
/* enable EDC IRQ */
at86rf215_reg_write(dev, dev->RF->RG_IRQM, RF_IRQ_EDC | RF_IRQ_TRXRDY);
/* set energy detect threshold to -84 dBm */
at86rf215_set_cca_threshold(dev, AT86RF215_EDT_DEFAULT);
/* enable address filter 0 */
at86rf215_reg_write(dev, dev->BBC->RG_AFC0, AFC0_AFEN0_MASK );
at86rf215_reg_write(dev, dev->BBC->RG_AMAACKPD, AMAACKPD_PD0_MASK);
/* enable auto-ACK with Frame Checksum & Data Rate derived from RX frame */
reg = AMCS_AACKFA_MASK | AMCS_AACKDR_MASK;
if (dev->flags & AT86RF215_OPT_AUTOACK) {
reg |= AMCS_AACK_MASK;
}
if (IS_USED(MODULE_AT86RF215_TIMESTAMP)) {
at86rf215_reg_write(dev, dev->BBC->RG_CNTC,
CNTC_EN_MASK | CNTC_CAPRXS_MASK);
}
at86rf215_reg_write(dev, dev->BBC->RG_AMCS, reg);
if (CONFIG_AT86RF215_DEFAULT_PHY_MODE == IEEE802154_PHY_OQPSK) {
at86rf215_configure_legacy_OQPSK(dev, CONFIG_AT86RF215_DEFAULT_OQPSK_RATE);
2020-03-23 22:44:03 +01:00
}
if (CONFIG_AT86RF215_DEFAULT_PHY_MODE == IEEE802154_PHY_MR_OQPSK) {
at86rf215_configure_OQPSK(dev, CONFIG_AT86RF215_DEFAULT_MR_OQPSK_CHIPS,
CONFIG_AT86RF215_DEFAULT_MR_OQPSK_RATE);
2020-03-23 22:44:03 +01:00
}
if (CONFIG_AT86RF215_DEFAULT_PHY_MODE == IEEE802154_PHY_MR_OFDM) {
2020-05-04 03:25:22 +02:00
at86rf215_configure_OFDM(dev, CONFIG_AT86RF215_DEFAULT_MR_OFDM_OPT,
CONFIG_AT86RF215_DEFAULT_MR_OFDM_MCS);
}
2020-06-13 18:03:32 +02:00
if (CONFIG_AT86RF215_DEFAULT_PHY_MODE == IEEE802154_PHY_MR_FSK) {
at86rf215_configure_FSK(dev, CONFIG_AT86RF215_DEFAULT_MR_FSK_SRATE,
CONFIG_AT86RF215_DEFAULT_MR_FSK_MOD_IDX,
CONFIG_AT86RF215_DEFAULT_MR_FSK_MORD,
CONFIG_AT86RF215_DEFAULT_MR_FSK_FEC);
}
/* set default channel */
at86rf215_set_chan(dev, dev->netdev.chan);
/* set short and long address */
uint64_t long_addr;
memcpy(&long_addr, dev->netdev.long_addr, sizeof(long_addr));
at86rf215_set_addr_long(dev, long_addr);
at86rf215_set_addr_short(dev, 0, unaligned_get_u16(dev->netdev.short_addr));
/* set default PAN id */
at86rf215_set_pan(dev, 0, dev->netdev.pan);
/* set default TX power */
at86rf215_set_txpower(dev, CONFIG_AT86RF215_DEFAULT_TXPOWER);
/* start listening for incoming packets */
at86rf215_rf_cmd(dev, CMD_RF_RX);
at86rf215_await_state(dev, RF_STATE_RX);
dev->state = AT86RF215_STATE_IDLE;
}
ssize_t at86rf215_send(at86rf215_t *dev, const void *data, size_t len)
{
/* check data length */
if (len > AT86RF215_MAX_PKT_LENGTH) {
DEBUG("[at86rf215] Error: data to send exceeds max packet size\n");
return -EOVERFLOW;
}
if (at86rf215_tx_prepare(dev)) {
return -EBUSY;
}
at86rf215_tx_load(dev, data, len, 0);
at86rf215_tx_exec(dev);
return len;
}
void at86rf215_tx_done(at86rf215_t *dev)
{
uint8_t amcs = at86rf215_reg_read(dev, dev->BBC->RG_AMCS);
/* re-enable AACK, disable TX2RX */
amcs &= ~AMCS_TX2RX_MASK;
if (dev->flags & AT86RF215_OPT_AUTOACK) {
amcs |= AMCS_AACK_MASK;
}
at86rf215_reg_write(dev, dev->BBC->RG_AMCS, amcs);
}
static bool _tx_ongoing(at86rf215_t *dev)
{
if (dev->flags & AT86RF215_OPT_TX_PENDING) {
return true;
}
/* we can still fill the TX buffer and queue TX
when in AT86RF215_STATE_RX_SEND_ACK */
if (dev->state == AT86RF215_STATE_TX ||
dev->state == AT86RF215_STATE_TX_WAIT_ACK) {
return true;
}
return false;
}
/*
* As there is no packet queue in RIOT we have to block in send()
* when the device is busy sending a previous frame.
*
* Since both _send() and _isr() are running in the same thread
* we have to service radio events while waiting in order to
* advance the previous transmission.
*/
static void _block_while_busy(at86rf215_t *dev)
{
gpio_irq_disable(dev->params.int_pin);
do {
if (gpio_read(dev->params.int_pin) || dev->timeout) {
at86rf215_driver.isr((netdev_t *) dev);
}
/* allow the other interface to process events */
thread_yield();
} while (_tx_ongoing(dev));
gpio_irq_enable(dev->params.int_pin);
}
static void at86rf215_block_while_busy(at86rf215_t *dev)
{
if (!IS_ACTIVE(MODULE_AT86RF215_BLOCKING_SEND)) {
return;
}
if (_tx_ongoing(dev)) {
DEBUG("[at86rf215] Block while TXing\n");
_block_while_busy(dev);
}
}
int at86rf215_tx_prepare(at86rf215_t *dev)
{
if (dev->state == AT86RF215_STATE_SLEEP) {
return -EAGAIN;
}
if (!IS_ACTIVE(MODULE_AT86RF215_BLOCKING_SEND) && _tx_ongoing(dev)) {
return -EBUSY;
} else {
at86rf215_block_while_busy(dev);
}
dev->tx_frame_len = IEEE802154_FCS_LEN;
return 0;
}
size_t at86rf215_tx_load(at86rf215_t *dev, const uint8_t *data,
size_t len, size_t offset)
{
/* set bit if ACK was requested and retransmission is enabled */
if (offset == 0 && (data[0] & IEEE802154_FCF_ACK_REQ) && dev->retries_max) {
dev->flags |= AT86RF215_OPT_ACK_REQUESTED;
}
at86rf215_reg_write_bytes(dev, dev->BBC->RG_FBTXS + offset, data, len);
dev->tx_frame_len += (uint16_t) len;
return offset + len;
}
int at86rf215_tx_exec(at86rf215_t *dev)
{
/* write frame length */
at86rf215_reg_write16(dev, dev->BBC->RG_TXFLL, dev->tx_frame_len);
dev->retries = dev->retries_max;
dev->csma_retries = dev->csma_retries_max;
dev->flags |= AT86RF215_OPT_TX_PENDING;
if ((dev->flags & AT86RF215_OPT_CSMA) && !(dev->flags & AT86RF215_OPT_CCATX)) {
dev->flags |= AT86RF215_OPT_CCA_PENDING;
}
if (dev->state == AT86RF215_STATE_IDLE) {
at86rf215_rf_cmd(dev, CMD_RF_TXPREP);
} else {
DEBUG("[at86rf215] will TX after %s\n", at86rf215_sw_state2a(dev->state));
}
return 0;
}
void at86rf215_tx_abort(at86rf215_t *dev)
{
dev->flags &= ~(AT86RF215_OPT_CCA_PENDING | AT86RF215_OPT_TX_PENDING);
at86rf215_tx_done(dev);
at86rf215_enable_baseband(dev);
at86rf215_rf_cmd(dev, CMD_RF_RX);
dev->state = AT86RF215_STATE_IDLE;
}
bool at86rf215_cca(at86rf215_t *dev)
{
bool clear;
uint8_t old_state;
if (dev->state != AT86RF215_STATE_IDLE) {
return false;
}
if (dev->flags & AT86RF215_OPT_TX_PENDING) {
return false;
}
if (!at86rf215_set_rx_from_idle(dev, &old_state)) {
return false;
}
/* disable ED IRQ, baseband */
at86rf215_reg_and(dev, dev->RF->RG_IRQM, ~(RF_IRQ_EDC | RF_IRQ_TRXRDY));
at86rf215_reg_and(dev, dev->BBC->RG_PC, ~PC_BBEN_MASK);
at86rf215_disable_rpc(dev);
/* start energy detect */
at86rf215_reg_write(dev, dev->RF->RG_EDC, RF_EDSINGLE);
while (!(at86rf215_reg_read(dev, dev->RF->RG_IRQS) & RF_IRQ_EDC)) {}
clear = !(at86rf215_reg_read(dev, dev->BBC->RG_AMCS) & AMCS_CCAED_MASK);
/* enable ED IRQ, baseband */
at86rf215_reg_or(dev, dev->RF->RG_IRQM, RF_IRQ_EDC | RF_IRQ_TRXRDY);
at86rf215_reg_or(dev, dev->BBC->RG_PC, PC_BBEN_MASK);
at86rf215_enable_rpc(dev);
at86rf215_set_idle_from_rx(dev, old_state);
return clear;
}