mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2025-01-15 22:12:58 +01:00
4f36d21957
Use `mutex_lock_cancelable()` and `mutex_cancel()` to implement `xtimer_mutex_lock_timeout()`.
283 lines
6.6 KiB
C
283 lines
6.6 KiB
C
/*
|
|
* Copyright (C) 2015 Kaspar Schleiser <kaspar@schleiser.de>
|
|
* Copyright (C) 2016 Eistec AB
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup sys_xtimer
|
|
*
|
|
* @{
|
|
* @file
|
|
* @brief xtimer convenience functionality
|
|
* @author Kaspar Schleiser <kaspar@schleiser.de>
|
|
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
|
|
* @}
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "xtimer.h"
|
|
#include "msg.h"
|
|
#include "mutex.h"
|
|
#include "rmutex.h"
|
|
#include "thread.h"
|
|
#include "irq.h"
|
|
#include "div.h"
|
|
#include "list.h"
|
|
|
|
#include "timex.h"
|
|
|
|
#ifdef MODULE_CORE_THREAD_FLAGS
|
|
#include "thread_flags.h"
|
|
#endif
|
|
|
|
#define ENABLE_DEBUG 0
|
|
#include "debug.h"
|
|
|
|
static void _callback_unlock_mutex(void* arg)
|
|
{
|
|
mutex_t *mutex = (mutex_t *) arg;
|
|
mutex_unlock(mutex);
|
|
}
|
|
|
|
void _xtimer_tsleep(uint32_t offset, uint32_t long_offset)
|
|
{
|
|
if (irq_is_in()) {
|
|
assert(!long_offset);
|
|
_xtimer_spin(offset);
|
|
return;
|
|
}
|
|
|
|
xtimer_t timer;
|
|
mutex_t mutex = MUTEX_INIT;
|
|
|
|
timer.callback = _callback_unlock_mutex;
|
|
timer.arg = (void*) &mutex;
|
|
|
|
mutex_lock(&mutex);
|
|
_xtimer_set64(&timer, offset, long_offset);
|
|
mutex_lock(&mutex);
|
|
}
|
|
|
|
void _xtimer_periodic_wakeup(uint32_t *last_wakeup, uint32_t period) {
|
|
xtimer_t timer;
|
|
mutex_t mutex = MUTEX_INIT;
|
|
|
|
timer.callback = _callback_unlock_mutex;
|
|
timer.arg = (void*) &mutex;
|
|
|
|
/* time sensitive until setting offset */
|
|
unsigned int state = irq_disable();
|
|
uint32_t now = _xtimer_now();
|
|
uint32_t elapsed = now - (*last_wakeup);
|
|
uint32_t offset = (*last_wakeup) + period - now;
|
|
irq_restore(state);
|
|
|
|
if (elapsed >= period) {
|
|
/* timer should be fired right now (some time drift might happen) */
|
|
*last_wakeup = now;
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&mutex);
|
|
_xtimer_set64(&timer, offset, 0);
|
|
mutex_lock(&mutex);
|
|
|
|
*last_wakeup = now + offset;
|
|
}
|
|
|
|
#ifdef MODULE_CORE_MSG
|
|
static void _callback_msg(void* arg)
|
|
{
|
|
msg_t *msg = (msg_t*)arg;
|
|
msg_send_int(msg, msg->sender_pid);
|
|
}
|
|
|
|
static inline void _setup_msg(xtimer_t *timer, msg_t *msg, kernel_pid_t target_pid)
|
|
{
|
|
timer->callback = _callback_msg;
|
|
timer->arg = (void*) msg;
|
|
|
|
/* use sender_pid field to get target_pid into callback function */
|
|
msg->sender_pid = target_pid;
|
|
}
|
|
|
|
void _xtimer_set_msg(xtimer_t *timer, uint32_t offset, msg_t *msg, kernel_pid_t target_pid)
|
|
{
|
|
_setup_msg(timer, msg, target_pid);
|
|
_xtimer_set64(timer, offset, 0);
|
|
}
|
|
|
|
void _xtimer_set_msg64(xtimer_t *timer, uint64_t offset, msg_t *msg, kernel_pid_t target_pid)
|
|
{
|
|
_setup_msg(timer, msg, target_pid);
|
|
_xtimer_set64(timer, offset, offset >> 32);
|
|
}
|
|
|
|
/* Prepares the message to trigger the timeout.
|
|
* Additionally, the xtimer_t struct gets initialized.
|
|
*/
|
|
static void _setup_timer_msg(msg_t *m, xtimer_t *t)
|
|
{
|
|
m->type = MSG_XTIMER;
|
|
m->content.ptr = m;
|
|
|
|
t->offset = t->long_offset = 0;
|
|
}
|
|
|
|
/* Waits for incoming message or timeout. */
|
|
static int _msg_wait(msg_t *m, msg_t *tmsg, xtimer_t *t)
|
|
{
|
|
msg_receive(m);
|
|
if (m->type == MSG_XTIMER && m->content.ptr == tmsg) {
|
|
/* we hit the timeout */
|
|
return -1;
|
|
}
|
|
else {
|
|
xtimer_remove(t);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int _xtimer_msg_receive_timeout64(msg_t *m, uint64_t timeout_ticks) {
|
|
msg_t tmsg;
|
|
xtimer_t t;
|
|
_setup_timer_msg(&tmsg, &t);
|
|
_xtimer_set_msg64(&t, timeout_ticks, &tmsg, thread_getpid());
|
|
return _msg_wait(m, &tmsg, &t);
|
|
}
|
|
|
|
int _xtimer_msg_receive_timeout(msg_t *msg, uint32_t timeout_ticks)
|
|
{
|
|
msg_t tmsg;
|
|
xtimer_t t;
|
|
_setup_timer_msg(&tmsg, &t);
|
|
_xtimer_set_msg(&t, timeout_ticks, &tmsg, thread_getpid());
|
|
return _msg_wait(msg, &tmsg, &t);
|
|
}
|
|
#endif /* MODULE_CORE_MSG */
|
|
|
|
static void _callback_wakeup(void* arg)
|
|
{
|
|
thread_wakeup((kernel_pid_t)((intptr_t)arg));
|
|
}
|
|
|
|
void _xtimer_set_wakeup(xtimer_t *timer, uint32_t offset, kernel_pid_t pid)
|
|
{
|
|
timer->callback = _callback_wakeup;
|
|
timer->arg = (void*) ((intptr_t)pid);
|
|
|
|
_xtimer_set64(timer, offset, 0);
|
|
}
|
|
|
|
void _xtimer_set_wakeup64(xtimer_t *timer, uint64_t offset, kernel_pid_t pid)
|
|
{
|
|
timer->callback = _callback_wakeup;
|
|
timer->arg = (void*) ((intptr_t)pid);
|
|
|
|
_xtimer_set64(timer, offset, offset >> 32);
|
|
}
|
|
|
|
void xtimer_now_timex(timex_t *out)
|
|
{
|
|
uint64_t now = xtimer_usec_from_ticks64(xtimer_now64());
|
|
|
|
out->seconds = div_u64_by_1000000(now);
|
|
out->microseconds = now - (out->seconds * US_PER_SEC);
|
|
}
|
|
|
|
static void _mutex_timeout(void *arg)
|
|
{
|
|
mutex_cancel(arg);
|
|
}
|
|
|
|
int xtimer_mutex_lock_timeout(mutex_t *mutex, uint64_t timeout)
|
|
{
|
|
if (mutex_trylock(mutex)) {
|
|
return 0;
|
|
}
|
|
|
|
if (timeout == 0) {
|
|
return - 1;
|
|
}
|
|
|
|
mutex_cancel_t mc = mutex_cancel_init(mutex);
|
|
xtimer_t t = { .callback = _mutex_timeout, .arg = &mc };
|
|
|
|
xtimer_set64(&t, timeout);
|
|
if (mutex_lock_cancelable(&mc)) {
|
|
return -1;
|
|
}
|
|
xtimer_remove(&t);
|
|
return 0;
|
|
}
|
|
|
|
int xtimer_rmutex_lock_timeout(rmutex_t *rmutex, uint64_t timeout)
|
|
{
|
|
if (rmutex_trylock(rmutex)) {
|
|
return 0;
|
|
}
|
|
if (xtimer_mutex_lock_timeout(&rmutex->mutex, timeout) == 0) {
|
|
atomic_store_explicit(&rmutex->owner,
|
|
thread_getpid(), memory_order_relaxed);
|
|
rmutex->refcount++;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#ifdef MODULE_CORE_THREAD_FLAGS
|
|
static void _set_timeout_flag_callback(void* arg)
|
|
{
|
|
thread_flags_set(arg, THREAD_FLAG_TIMEOUT);
|
|
}
|
|
|
|
static void _set_timeout_flag_prepare(xtimer_t *t)
|
|
{
|
|
t->callback = _set_timeout_flag_callback;
|
|
t->arg = thread_get_active();
|
|
thread_flags_clear(THREAD_FLAG_TIMEOUT);
|
|
}
|
|
|
|
void xtimer_set_timeout_flag(xtimer_t *t, uint32_t timeout)
|
|
{
|
|
_set_timeout_flag_prepare(t);
|
|
xtimer_set(t, timeout);
|
|
}
|
|
|
|
void xtimer_set_timeout_flag64(xtimer_t *t, uint64_t timeout)
|
|
{
|
|
_set_timeout_flag_prepare(t);
|
|
xtimer_set64(t, timeout);
|
|
}
|
|
#endif
|
|
|
|
uint64_t xtimer_left_usec(const xtimer_t *timer)
|
|
{
|
|
unsigned state = irq_disable();
|
|
/* ensure we're working on valid data by making a local copy of timer */
|
|
xtimer_t t = *timer;
|
|
uint64_t now_us = xtimer_now_usec64();
|
|
irq_restore(state);
|
|
|
|
uint64_t start_us = _xtimer_usec_from_ticks64(
|
|
((uint64_t)t.long_start_time << 32) | t.start_time);
|
|
uint64_t target_us = start_us + _xtimer_usec_from_ticks64(
|
|
((uint64_t)t.long_offset) << 32 | t.offset);
|
|
|
|
/* Let's assume that 64bit won't overflow anytime soon. There'd be >580
|
|
* years when counting nanoseconds. With microseconds, there are 580000
|
|
* years of space in 2**64... */
|
|
if (now_us > target_us) {
|
|
return 0;
|
|
}
|
|
|
|
return target_us - now_us;
|
|
}
|