mirror of
https://github.com/RIOT-OS/RIOT.git
synced 2024-12-29 04:50:03 +01:00
301 lines
8.4 KiB
C
301 lines
8.4 KiB
C
/*
|
|
* Copyright (C) 2014 Hamburg University of Applied Sciences
|
|
* 2014-2017 Freie Universität Berlin
|
|
* 2016-2017 OTA keys S.A.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU Lesser
|
|
* General Public License v2.1. See the file LICENSE in the top level
|
|
* directory for more details.
|
|
*/
|
|
|
|
/**
|
|
* @ingroup cpu_stm32_common
|
|
* @ingroup drivers_periph_spi
|
|
* @{
|
|
*
|
|
* @file
|
|
* @brief Low-level SPI driver implementation
|
|
*
|
|
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
|
|
* @author Fabian Nack <nack@inf.fu-berlin.de>
|
|
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
|
|
* @author Vincent Dupont <vincent@otakeys.com>
|
|
* @author Joakim Nohlgård <joakim.nohlgard@eistec.se>
|
|
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
|
|
*
|
|
* @}
|
|
*/
|
|
|
|
#include "cpu.h"
|
|
#include "mutex.h"
|
|
#include "assert.h"
|
|
#include "periph/spi.h"
|
|
#include "pm_layered.h"
|
|
|
|
/**
|
|
* @brief Number of bits to shift the BR value in the CR1 register
|
|
*/
|
|
#define BR_SHIFT (3U)
|
|
|
|
/**
|
|
* @brief Allocate one lock per SPI device
|
|
*/
|
|
static mutex_t locks[SPI_NUMOF];
|
|
|
|
static inline SPI_TypeDef *dev(spi_t bus)
|
|
{
|
|
return spi_config[bus].dev;
|
|
}
|
|
|
|
void spi_init(spi_t bus)
|
|
{
|
|
assert(bus < SPI_NUMOF);
|
|
|
|
/* initialize device lock */
|
|
mutex_init(&locks[bus]);
|
|
/* trigger pin initialization */
|
|
spi_init_pins(bus);
|
|
|
|
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask);
|
|
/* reset configuration */
|
|
dev(bus)->CR1 = 0;
|
|
#ifdef SPI_I2SCFGR_I2SE
|
|
dev(bus)->I2SCFGR = 0;
|
|
#endif
|
|
/* configure SPI for 8-bit data width */
|
|
#ifdef SPI_CR2_FRXTH
|
|
dev(bus)->CR2 = (SPI_CR2_FRXTH | SPI_CR2_DS_0 | SPI_CR2_DS_1 | SPI_CR2_DS_2);
|
|
#else
|
|
dev(bus)->CR2 = 0;
|
|
#endif
|
|
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask);
|
|
}
|
|
|
|
void spi_init_pins(spi_t bus)
|
|
{
|
|
#ifdef CPU_FAM_STM32F1
|
|
gpio_init_af(spi_config[bus].sclk_pin, GPIO_AF_OUT_PP);
|
|
gpio_init_af(spi_config[bus].mosi_pin, GPIO_AF_OUT_PP);
|
|
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
|
|
#else
|
|
gpio_init(spi_config[bus].mosi_pin, GPIO_OUT);
|
|
gpio_init(spi_config[bus].miso_pin, GPIO_IN);
|
|
gpio_init(spi_config[bus].sclk_pin, GPIO_OUT);
|
|
gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].af);
|
|
gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].af);
|
|
gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].af);
|
|
#endif
|
|
}
|
|
|
|
int spi_init_cs(spi_t bus, spi_cs_t cs)
|
|
{
|
|
if (bus >= SPI_NUMOF) {
|
|
return SPI_NODEV;
|
|
}
|
|
if (cs == SPI_CS_UNDEF ||
|
|
(((cs & SPI_HWCS_MASK) == SPI_HWCS_MASK) && (cs & ~(SPI_HWCS_MASK)))) {
|
|
return SPI_NOCS;
|
|
}
|
|
|
|
if (cs == SPI_HWCS_MASK) {
|
|
if (spi_config[bus].cs_pin == GPIO_UNDEF) {
|
|
return SPI_NOCS;
|
|
}
|
|
#ifdef CPU_FAM_STM32F1
|
|
gpio_init_af(spi_config[bus].cs_pin, GPIO_AF_OUT_PP);
|
|
#else
|
|
gpio_init(spi_config[bus].cs_pin, GPIO_OUT);
|
|
gpio_init_af(spi_config[bus].cs_pin, spi_config[bus].af);
|
|
#endif
|
|
}
|
|
else {
|
|
gpio_init((gpio_t)cs, GPIO_OUT);
|
|
gpio_set((gpio_t)cs);
|
|
}
|
|
|
|
return SPI_OK;
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_SPI_GPIO_MODE
|
|
int spi_init_with_gpio_mode(spi_t bus, spi_gpio_mode_t mode)
|
|
{
|
|
assert(bus < SPI_NUMOF);
|
|
|
|
int ret = 0;
|
|
|
|
#ifdef CPU_FAM_STM32F1
|
|
/* This has no effect on STM32F1 */
|
|
return ret;
|
|
#else
|
|
ret += gpio_init(spi_config[bus].mosi_pin, mode.mosi);
|
|
ret += gpio_init(spi_config[bus].miso_pin, mode.miso);
|
|
ret += gpio_init(spi_config[bus].sclk_pin, mode.sclk);
|
|
gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].af);
|
|
gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].af);
|
|
gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].af);
|
|
return ret;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
int spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk)
|
|
{
|
|
/* lock bus */
|
|
mutex_lock(&locks[bus]);
|
|
#ifdef STM32_PM_STOP
|
|
/* block STOP mode */
|
|
pm_block(STM32_PM_STOP);
|
|
#endif
|
|
/* enable SPI device clock */
|
|
periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask);
|
|
/* enable device */
|
|
uint8_t br = spi_divtable[spi_config[bus].apbbus][clk];
|
|
dev(bus)->CR1 = ((br << BR_SHIFT) | mode | SPI_CR1_MSTR);
|
|
if (cs != SPI_HWCS_MASK) {
|
|
dev(bus)->CR1 |= (SPI_CR1_SSM | SPI_CR1_SSI);
|
|
}
|
|
else {
|
|
dev(bus)->CR2 |= (SPI_CR2_SSOE);
|
|
}
|
|
|
|
return SPI_OK;
|
|
}
|
|
|
|
void spi_release(spi_t bus)
|
|
{
|
|
/* disable device and release lock */
|
|
dev(bus)->CR1 = 0;
|
|
dev(bus)->CR2 &= ~(SPI_CR2_SSOE);
|
|
periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask);
|
|
#ifdef STM32_PM_STOP
|
|
/* unblock STOP mode */
|
|
pm_unblock(STM32_PM_STOP);
|
|
#endif
|
|
mutex_unlock(&locks[bus]);
|
|
}
|
|
|
|
static inline void _wait_for_end(spi_t bus)
|
|
{
|
|
/* make sure the transfer is completed before continuing, see reference
|
|
* manual(s) -> section 'Disabling the SPI' */
|
|
while (!(dev(bus)->SR & SPI_SR_TXE)) {}
|
|
while (dev(bus)->SR & SPI_SR_BSY) {}
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_DMA
|
|
static void _transfer_dma(spi_t bus, const void *out, void *in, size_t len)
|
|
{
|
|
uint8_t tmp = 0;
|
|
dma_acquire(spi_config[bus].tx_dma);
|
|
dma_acquire(spi_config[bus].rx_dma);
|
|
|
|
if (!out) {
|
|
dma_configure(spi_config[bus].tx_dma, spi_config[bus].tx_dma_chan, &tmp,
|
|
&(dev(bus)->DR), len, DMA_MEM_TO_PERIPH, 0);
|
|
}
|
|
else {
|
|
dma_configure(spi_config[bus].tx_dma, spi_config[bus].tx_dma_chan, out,
|
|
&(dev(bus)->DR), len, DMA_MEM_TO_PERIPH, DMA_INC_SRC_ADDR);
|
|
}
|
|
if (!in) {
|
|
dma_configure(spi_config[bus].rx_dma, spi_config[bus].rx_dma_chan,
|
|
&(dev(bus)->DR), &tmp, len, DMA_PERIPH_TO_MEM, 0);
|
|
}
|
|
else {
|
|
dma_configure(spi_config[bus].rx_dma, spi_config[bus].rx_dma_chan,
|
|
&(dev(bus)->DR), in, len, DMA_PERIPH_TO_MEM, DMA_INC_DST_ADDR);
|
|
}
|
|
dev(bus)->CR2 |= SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN;
|
|
|
|
dma_start(spi_config[bus].rx_dma);
|
|
dma_start(spi_config[bus].tx_dma);
|
|
|
|
dma_wait(spi_config[bus].rx_dma);
|
|
dma_wait(spi_config[bus].tx_dma);
|
|
|
|
dev(bus)->CR2 &= ~(SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
|
|
|
|
dma_stop(spi_config[bus].tx_dma);
|
|
dma_stop(spi_config[bus].rx_dma);
|
|
|
|
dma_release(spi_config[bus].tx_dma);
|
|
dma_release(spi_config[bus].rx_dma);
|
|
|
|
_wait_for_end(bus);
|
|
}
|
|
#endif
|
|
|
|
static void _transfer_no_dma(spi_t bus, const void *out, void *in, size_t len)
|
|
{
|
|
const uint8_t *outbuf = out;
|
|
uint8_t *inbuf = in;
|
|
|
|
/* we need to recast the data register to uint_8 to force 8-bit access */
|
|
volatile uint8_t *DR = (volatile uint8_t*)&(dev(bus)->DR);
|
|
|
|
/* transfer data, use shortpath if only sending data */
|
|
if (!inbuf) {
|
|
for (size_t i = 0; i < len; i++) {
|
|
while (!(dev(bus)->SR & SPI_SR_TXE));
|
|
*DR = outbuf[i];
|
|
}
|
|
/* wait until everything is finished and empty the receive buffer */
|
|
while (!(dev(bus)->SR & SPI_SR_TXE)) {}
|
|
while (dev(bus)->SR & SPI_SR_BSY) {}
|
|
while (dev(bus)->SR & SPI_SR_RXNE) {
|
|
dev(bus)->DR; /* we might just read 2 bytes at once here */
|
|
}
|
|
}
|
|
else if (!outbuf) {
|
|
for (size_t i = 0; i < len; i++) {
|
|
while (!(dev(bus)->SR & SPI_SR_TXE));
|
|
*DR = 0;
|
|
while (!(dev(bus)->SR & SPI_SR_RXNE));
|
|
inbuf[i] = *DR;
|
|
}
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < len; i++) {
|
|
while (!(dev(bus)->SR & SPI_SR_TXE));
|
|
*DR = outbuf[i];
|
|
while (!(dev(bus)->SR & SPI_SR_RXNE));
|
|
inbuf[i] = *DR;
|
|
}
|
|
}
|
|
|
|
_wait_for_end(bus);
|
|
}
|
|
|
|
void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont,
|
|
const void *out, void *in, size_t len)
|
|
{
|
|
/* make sure at least one input or one output buffer is given */
|
|
assert(out || in);
|
|
|
|
/* active the given chip select line */
|
|
dev(bus)->CR1 |= (SPI_CR1_SPE); /* this pulls the HW CS line low */
|
|
if ((cs != SPI_HWCS_MASK) && (cs != SPI_CS_UNDEF)) {
|
|
gpio_clear((gpio_t)cs);
|
|
}
|
|
|
|
#ifdef MODULE_PERIPH_DMA
|
|
if (spi_config[bus].tx_dma != DMA_STREAM_UNDEF
|
|
&& spi_config[bus].rx_dma != DMA_STREAM_UNDEF) {
|
|
_transfer_dma(bus, out, in, len);
|
|
}
|
|
else {
|
|
#endif
|
|
_transfer_no_dma(bus, out, in, len);
|
|
#ifdef MODULE_PERIPH_DMA
|
|
}
|
|
#endif
|
|
|
|
/* release the chip select if not specified differently */
|
|
if ((!cont) && (cs != SPI_CS_UNDEF)) {
|
|
dev(bus)->CR1 &= ~(SPI_CR1_SPE); /* pull HW CS line high */
|
|
if (cs != SPI_HWCS_MASK) {
|
|
gpio_set((gpio_t)cs);
|
|
}
|
|
}
|
|
}
|