1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-18 12:52:44 +01:00
RIOT/sys/net/routing/rpl/rpl.c
2015-02-02 12:54:58 +01:00

725 lines
23 KiB
C

/*
* Copyright (C) 2013, 2014 INRIA.
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup rpl
* @{
*
* @file rpl.c
* @brief Implementation of the RPL-core.
*
* Implementation of core RPL-functions. Normally it shouldn't be necessary to
* modify this file.
*
* @author Eric Engel <eric.engel@fu-berlin.de>
* @author Fabian Brandt <fabianbr@zedat.fu-berlin.de>
*/
#include <string.h>
#include "vtimer.h"
#include "thread.h"
#include "mutex.h"
#include "msg.h"
#include "rpl.h"
#include "etx_beaconing.h"
#include "of0.h"
#include "of_mrhof.h"
#include "trickle.h"
#include "sixlowpan.h"
#include "net_help.h"
#if RPL_DEFAULT_MOP == RPL_STORING_MODE_NO_MC
#include "rpl/rpl_storing.h"
#elif RPL_DEFAULT_MOP == RPL_NON_STORING_MODE
#include "rpl/rpl_nonstoring.h"
#else
#include "rpl/rpl_storing.h"
#endif
#define ENABLE_DEBUG (0)
#if ENABLE_DEBUG
char addr_str[IPV6_MAX_ADDR_STR_LEN];
#endif
#include "debug.h"
/* global variables */
kernel_pid_t rpl_process_pid = KERNEL_PID_UNDEF;
mutex_t rpl_send_mutex = MUTEX_INIT;
msg_t rpl_msg_queue[RPL_PKT_RECV_BUF_SIZE];
char rpl_process_buf[RPL_PROCESS_STACKSIZE];
uint8_t rpl_buffer[BUFFER_SIZE - LL_HDR_LEN];
static timex_t rt_time;
static vtimer_t rt_timer;
static void _dao_handle_send(rpl_dodag_t *dodag);
static void _rpl_update_routing_table(void);
#if RPL_DEFAULT_MOP == RPL_NON_STORING_MODE
static uint8_t srh_buffer[BUFFER_SIZE];
static uint8_t srh_send_buffer[BUFFER_SIZE];
static ipv6_addr_t *down_next_hop;
static ipv6_srh_t *srh_header;
static msg_t srh_m_send, srh_m_recv;
#endif
#if RPL_MAX_ROUTING_ENTRIES != 0
static rpl_routing_entry_t rpl_routing_table[RPL_MAX_ROUTING_ENTRIES];
#endif
uint8_t rpl_max_routing_entries;
static ipv6_addr_t my_address;
/* IPv6 message buffer */
static ipv6_hdr_t *ipv6_buf;
uint8_t rpl_init(int if_id)
{
rpl_instances_init();
/* initialize routing table */
#if RPL_MAX_ROUTING_ENTRIES != 0
rpl_max_routing_entries = RPL_MAX_ROUTING_ENTRIES;
rpl_clear_routing_table();
#endif
rpl_process_pid = thread_create(rpl_process_buf, RPL_PROCESS_STACKSIZE,
PRIORITY_MAIN - 1, CREATE_STACKTEST,
rpl_process, NULL, "rpl_process");
sixlowpan_lowpan_init_interface(if_id);
/* need link local prefix to query _our_ corresponding address */
ipv6_addr_t ll_address;
ipv6_addr_set_link_local_prefix(&ll_address);
ipv6_net_if_get_best_src_addr(&my_address, &ll_address);
ipv6_register_rpl_handler(rpl_process_pid);
#if (RPL_DEFAULT_MOP == RPL_NON_STORING_MODE)
ipv6_iface_set_srh_indicator(rpl_is_root);
#endif
ipv6_iface_set_routing_provider(rpl_get_next_hop);
DEBUGF("All addresses set!\n");
/* initialize objective function manager */
rpl_of_manager_init(&my_address);
rpl_init_mode(&my_address);
rt_time = timex_set(RPL_LIFETIME_STEP, 0);
vtimer_set_msg(&rt_timer, rt_time, rpl_process_pid, RPL_MSG_TYPE_ROUTING_ENTRY_UPDATE, NULL);
return SIXLOWERROR_SUCCESS;
}
void rpl_init_root(void)
{
#if (RPL_DEFAULT_MOP == RPL_NON_STORING_MODE)
#ifndef RPL_NODE_IS_ROOT
puts("\n############################## ERROR ###############################");
puts("This configuration has NO ROUTING TABLE available for the root node!");
puts("The root will NOT be INITIALIZED.");
puts("Please build the binary for root in non-storing MOP with:");
puts("\t\t'make RPL_NODE_IS_ROOT=1'");
puts("############################## ERROR ###############################\n");
return;
#endif
#endif
rpl_init_root_mode();
}
uint8_t rpl_is_root(void)
{
return rpl_is_root_mode();
}
#if RPL_DEFAULT_MOP == RPL_NON_STORING_MODE
void internal_srh_process(ipv6_srh_t *srh_header)
{
/* modify it accordingly - the number of entries is not depending on padding,
* because there is none.
*/
uint8_t n = srh_header->hdrextlen / sizeof(ipv6_addr_t);
if (srh_header->segments_left > n) {
memset(&down_next_hop, 0, sizeof(ipv6_addr_t));
DEBUGF("[Error] source-routing header is invalid.\n");
}
else {
uint8_t segs = srh_header->segments_left;
DEBUGF("SRH-length: %d\n", srh_header->hdrextlen);
down_next_hop = &srh_header->route[n - segs];
srh_header->segments_left = segs - 1;
DEBUGF("Segments left after reduction: %d\n", srh_header->segments_left);
DEBUGF("Next hop is: %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, down_next_hop));
}
}
#endif
void *rpl_process(void *arg)
{
(void) arg;
msg_t m_recv;
msg_init_queue(rpl_msg_queue, RPL_PKT_RECV_BUF_SIZE);
rpl_dodag_t *dodag;
trickle_t *trickle;
while (1) {
msg_receive(&m_recv);
if (m_recv.type > ICMP_CODE_END) {
switch (m_recv.type) {
case RPL_MSG_TYPE_DAO_HANDLE:
dodag = (rpl_dodag_t *) m_recv.content.ptr;
if (dodag->joined) {
_dao_handle_send(dodag);
}
break;
case RPL_MSG_TYPE_ROUTING_ENTRY_UPDATE:
_rpl_update_routing_table();
break;
case RPL_MSG_TYPE_TRICKLE_INTERVAL:
trickle = (trickle_t *) m_recv.content.ptr;
if (trickle->callback.func != NULL) {
trickle_interval(trickle);
}
break;
case RPL_MSG_TYPE_TRICKLE_CALLBACK:
trickle = (trickle_t *) m_recv.content.ptr;
if (trickle->callback.func != NULL) {
trickle_callback(trickle);
}
break;
default:
break;
}
}
/* This is an RPL-related message. */
else {
/* differentiate packet types */
ipv6_buf = (ipv6_hdr_t *) m_recv.content.ptr;
memcpy(&rpl_buffer, ipv6_buf, NTOHS(ipv6_buf->length) + IPV6_HDR_LEN);
if (ipv6_buf->nextheader == IPV6_PROTO_NUM_ICMPV6) {
/* get code for message-interpretation and process message */
DEBUGF("Received RPL information of type %04X and length %u\n",
m_recv.type, NTOHS(ipv6_buf->length));
switch (m_recv.type) {
case (ICMP_CODE_DIS): {
rpl_recv_DIS();
break;
}
case (ICMP_CODE_DIO): {
rpl_recv_DIO();
break;
}
case (ICMP_CODE_DAO): {
rpl_recv_DAO();
break;
}
case (ICMP_CODE_DAO_ACK): {
rpl_recv_DAO_ACK();
break;
}
default:
break;
}
}
#if RPL_DEFAULT_MOP == RPL_NON_STORING_MODE
/* If the message is not RPL-type, it relates to non-storing mode */
else if (RPL_DEFAULT_MOP == RPL_NON_STORING_MODE) {
if (ipv6_buf->nextheader == IPV6_PROTO_NUM_SRH) {
srh_header = ((ipv6_srh_t *)(m_recv.content.ptr + IPV6_HDR_LEN));
/* if there are no segments left, the routing is finished */
if (srh_header->segments_left == 0) {
DEBUGF("Source routing finished with next header: %02X.\n",
srh_header->nextheader);
DEBUGF("Size of srh: %d\n", srh_header->hdrextlen);
uint8_t *payload = ((uint8_t *)(m_recv.content.ptr +
IPV6_HDR_LEN + sizeof(ipv6_srh_t)+srh_header->hdrextlen));
rpl_remove_srh_header(ipv6_buf, payload, srh_header->nextheader);
}
else {
internal_srh_process(srh_header);
if (down_next_hop != NULL) {
uint8_t *payload = ((uint8_t *)(m_recv.content.ptr + IPV6_HDR_LEN));
rpl_srh_sendto(payload, NTOHS(ipv6_buf->length), &ipv6_buf->srcaddr,
down_next_hop, srh_header, 0);
}
}
}
#if RPL_MAX_ROUTING_ENTRIES != 0
else {
srh_header = rpl_get_srh_header(ipv6_buf);
if (srh_header != NULL) {
uint8_t *payload = ((uint8_t *)(m_recv.content.ptr + IPV6_HDR_LEN));
rpl_srh_sendto(payload, NTOHS(ipv6_buf->length),
&ipv6_buf->srcaddr, &ipv6_buf->destaddr, srh_header,
srh_header->hdrextlen + sizeof(ipv6_srh_t));
}
}
#endif
}
#endif
}
}
}
void rpl_send_DIO(ipv6_addr_t *destination)
{
if (destination) {
DEBUGF("Send DIO to %s\n", ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, destination));
}
mutex_lock(&rpl_send_mutex);
rpl_send_DIO_mode(destination);
mutex_unlock(&rpl_send_mutex);
}
void rpl_send_DAO(ipv6_addr_t *destination, uint8_t lifetime,
bool default_lifetime, uint8_t start_index)
{
if (destination) {
DEBUGF("Send DAO to %s\n", ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, destination));
}
mutex_lock(&rpl_send_mutex);
rpl_send_DAO_mode(destination, lifetime, default_lifetime, start_index);
mutex_unlock(&rpl_send_mutex);
}
void rpl_send_DIS(ipv6_addr_t *destination)
{
if (destination) {
DEBUGF("Send DIS to %s\n", ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, destination));
}
mutex_lock(&rpl_send_mutex);
rpl_send_DIS_mode(destination);
mutex_unlock(&rpl_send_mutex);
}
void rpl_send_DAO_ACK(ipv6_addr_t *destination)
{
if (destination) {
DEBUGF("Send DAO ACK to %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, destination));
}
mutex_lock(&rpl_send_mutex);
rpl_send_DAO_ACK_mode(destination);
mutex_unlock(&rpl_send_mutex);
}
void rpl_recv_DIO(void)
{
DEBUGF("DIO received\n");
rpl_recv_DIO_mode();
}
void rpl_recv_DAO(void)
{
DEBUGF("DAO received\n");
rpl_recv_DAO_mode();
}
void rpl_recv_DIS(void)
{
DEBUGF("DIS received\n");
rpl_recv_DIS_mode();
}
void rpl_recv_DAO_ACK(void)
{
DEBUGF("DAO ACK received\n");
rpl_recv_dao_ack_mode();
}
void _rpl_update_routing_table(void) {
rpl_dodag_t *my_dodag = rpl_get_my_dodag();
rpl_routing_entry_t *rt;
if (my_dodag != NULL) {
rt = rpl_get_routing_table();
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
if (rt[i].used) {
if (rt[i].lifetime <= 1) {
memset(&rt[i], 0, sizeof(rt[i]));
}
else {
rt[i].lifetime = rt[i].lifetime - RPL_LIFETIME_STEP;
}
}
}
/* Parent is NULL for root too */
if (my_dodag->my_preferred_parent != NULL) {
if (my_dodag->my_preferred_parent->lifetime <= 1) {
DEBUGF("parent lifetime timeout\n");
rpl_parent_update(NULL);
}
else {
my_dodag->my_preferred_parent->lifetime =
my_dodag->my_preferred_parent->lifetime - RPL_LIFETIME_STEP;
}
}
}
vtimer_remove(&rt_timer);
vtimer_set_msg(&rt_timer, rt_time, rpl_process_pid, RPL_MSG_TYPE_ROUTING_ENTRY_UPDATE, NULL);
}
void rpl_delay_dao(rpl_dodag_t *dodag)
{
dodag->dao_time = timex_set(DEFAULT_DAO_DELAY, 0);
dodag->dao_counter = 0;
dodag->ack_received = false;
vtimer_remove(&dodag->dao_timer);
vtimer_set_msg(&dodag->dao_timer, dodag->dao_time,
rpl_process_pid, RPL_MSG_TYPE_DAO_HANDLE, dodag);
}
/* This function is used for regular update of the routes.
* The Timer can be overwritten, as the normal delay_dao function gets called
*/
void long_delay_dao(rpl_dodag_t *dodag)
{
dodag->dao_time = timex_set(REGULAR_DAO_INTERVAL, 0);
dodag->dao_counter = 0;
dodag->ack_received = false;
vtimer_remove(&dodag->dao_timer);
vtimer_set_msg(&dodag->dao_timer, dodag->dao_time,
rpl_process_pid, RPL_MSG_TYPE_DAO_HANDLE, dodag);
}
void rpl_dao_ack_received(rpl_dodag_t *dodag)
{
dodag->ack_received = true;
long_delay_dao(dodag);
}
void _dao_handle_send(rpl_dodag_t *dodag) {
if ((dodag->ack_received == false) && (dodag->dao_counter < DAO_SEND_RETRIES)) {
dodag->dao_counter++;
rpl_send_DAO(NULL, 0, true, 0);
dodag->dao_time = timex_set(DEFAULT_WAIT_FOR_DAO_ACK, 0);
vtimer_remove(&dodag->dao_timer);
vtimer_set_msg(&dodag->dao_timer, dodag->dao_time,
rpl_process_pid, RPL_MSG_TYPE_DAO_HANDLE, dodag);
}
else if (dodag->ack_received == false) {
long_delay_dao(dodag);
}
}
ipv6_addr_t *rpl_get_next_hop(ipv6_addr_t *addr)
{
DEBUGF("Looking up the next hop to %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, addr));
#if RPL_MAX_ROUTING_ENTRIES != 0
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
if (rpl_routing_table[i].used) {
DEBUGF("checking %d: %s\n", i,
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, &rpl_routing_table[i].address));
}
if ((RPL_DEFAULT_MOP == RPL_NON_STORING_MODE) && rpl_is_root()) {
if (rpl_routing_table[i].used && rpl_equal_id(&rpl_routing_table[i].address, addr)) {
DEBUGF("found %d: %s\n", i,
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN,
&rpl_routing_table[i].address));
return &rpl_routing_table[i].address;
}
}
else {
if (rpl_routing_table[i].used && rpl_equal_id(&rpl_routing_table[i].address, addr)) {
DEBUGF("found %d: %s\n", i,
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN,
&rpl_routing_table[i].next_hop));
return &rpl_routing_table[i].next_hop;
}
}
}
#else
(void) addr;
#endif
return (rpl_get_my_preferred_parent());
}
#if RPL_MAX_ROUTING_ENTRIES != 0
void rpl_add_routing_entry(ipv6_addr_t *addr, ipv6_addr_t *next_hop, uint16_t lifetime)
{
rpl_routing_entry_t *entry = rpl_find_routing_entry(addr);
if (entry != NULL) {
entry->lifetime = lifetime;
return;
}
DEBUGF("Adding routing entry %s\n", ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, addr));
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
if (!rpl_routing_table[i].used) {
memcpy(&rpl_routing_table[i].address, addr, sizeof(ipv6_addr_t));
memcpy(&rpl_routing_table[i].next_hop, next_hop, sizeof(ipv6_addr_t));
rpl_routing_table[i].lifetime = lifetime;
rpl_routing_table[i].used = 1;
break;
}
}
}
#endif
#if RPL_MAX_ROUTING_ENTRIES != 0
void rpl_del_routing_entry(ipv6_addr_t *addr)
{
DEBUGF("Deleting routing entry %s\n", ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, addr));
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
if (rpl_routing_table[i].used && rpl_equal_id(&rpl_routing_table[i].address, addr)) {
memset(&rpl_routing_table[i], 0, sizeof(rpl_routing_table[i]));
return;
}
}
}
#endif
#if RPL_MAX_ROUTING_ENTRIES != 0
rpl_routing_entry_t *rpl_find_routing_entry(ipv6_addr_t *addr)
{
DEBUGF("Finding routing entry %s\n", ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, addr));
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
if (rpl_routing_table[i].used && rpl_equal_id(&rpl_routing_table[i].address, addr)) {
return &rpl_routing_table[i];
}
}
return NULL;
}
#endif
#if RPL_MAX_ROUTING_ENTRIES != 0
void rpl_clear_routing_table(void)
{
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
memset(&rpl_routing_table[i], 0, sizeof(rpl_routing_table[i]));
}
}
#endif
rpl_routing_entry_t *rpl_get_routing_table(void)
{
#if RPL_MAX_ROUTING_ENTRIES != 0
return rpl_routing_table;
#else
return NULL;
#endif
}
#if RPL_DEFAULT_MOP == RPL_NON_STORING_MODE
/* everything from here on is non-storing mode related */
#if RPL_MAX_ROUTING_ENTRIES != 0
void rpl_add_srh_entry(ipv6_addr_t *child, ipv6_addr_t *parent, uint16_t lifetime)
{
rpl_routing_entry_t *entry = rpl_find_routing_entry(child);
/* If we already have this entry and the parent from parent/child is the same as already
* registered, we only update the lifetime. If only the parent of the child changes, we
* delete the previous entry and add it below.
*/
if (entry != NULL) {
if (ipv6_addr_is_equal(parent, &entry->next_hop)) {
entry->lifetime = lifetime;
return;
}
else {
rpl_del_routing_entry(child);
}
}
/* This maybe a bit confusing since the root also using the standard routing table,
* but in this case the code stays cleaner - especially for rt_over_timer from trickle.c.
* Just keep in mind that address is now child (unique, iteration variable) and parent is
* now next_hop. The whole routing table transforms to a list of children and their parents,
* so that route aggregation can be done properly.
*/
DEBUGF("Adding source-routing entry child: %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, child));
DEBUGF("Adding source-routing entry parent: %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, parent));
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
if (!rpl_routing_table[i].used) {
memcpy(&rpl_routing_table[i].address, child, sizeof(ipv6_addr_t));
memcpy(&rpl_routing_table[i].next_hop, parent, sizeof(ipv6_addr_t));
rpl_routing_table[i].lifetime = lifetime;
rpl_routing_table[i].used = 1;
break;
}
}
}
#endif
/**
* @brief Checks if two IPv6 host suffixes are equal.
*
* @param[in] a An IPv6 address.
* @param[in] b Another IPv6 address.
*
* @return 1 if *a* and *b* are equal for host suffixes, 0 otherwise.
*/
int ipv6_suffix_is_equal(const ipv6_addr_t *a, const ipv6_addr_t *b)
{
return (a->uint32[2] == b->uint32[2]) &&
(a->uint32[3] == b->uint32[3]);
}
#if RPL_MAX_ROUTING_ENTRIES != 0
ipv6_srh_t *rpl_get_srh_header(ipv6_hdr_t *act_ipv6_hdr)
{
uint8_t route_length = RPL_MAX_SRH_PATH_LENGTH;
ipv6_addr_t rev_route[route_length];
ipv6_addr_t *actual_node;
uint8_t counter = 0;
uint8_t traceable;
ipv6_srh_t *srh_header = (ipv6_srh_t *)(&srh_buffer);
/* init source route with child */
actual_node = &(act_ipv6_hdr->destaddr);
DEBUGF("DESTINATION NODE: %s\n", ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, actual_node));
while (!(rpl_equal_id(actual_node, &my_address))) {
/* set check variable - this is reversed,
* if a child/parent-relation is found in one iteration of the routing table */
traceable = 0;
for (uint8_t i = 0; i < rpl_max_routing_entries; i++) {
if (rpl_routing_table[i].used
&& ipv6_suffix_is_equal(&rpl_routing_table[i].address, actual_node)) {
DEBUGF("[INFO] Found parent-child relation with P: %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN,
&rpl_routing_table[i].next_hop));
DEBUGF(" and C: %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, actual_node));
memcpy(&rev_route[counter], actual_node, sizeof(ipv6_addr_t));
actual_node = &rpl_routing_table[i].next_hop;
counter++;
traceable = 1;
if (counter > route_length) {
DEBUGF("[INFO] Both lengths are %d and %d\n", counter, route_length);
DEBUGF("Error with computing source routing header.\n");
return NULL;
}
break;
}
}
if (traceable == 0) {
DEBUGF("No route to destination.\n");
return NULL;
}
}
/* build real route based on reversed route.
* After building it starts with the node next to destination
*/
if (counter > 1) {
for (uint8_t i = 0; i < counter-1; i++) {
memcpy(&srh_header->route[i], &rev_route[counter-i-2], sizeof(ipv6_addr_t));
}
srh_header->hdrextlen = sizeof(ipv6_addr_t)*(counter-1);
memcpy(&(act_ipv6_hdr->destaddr), &rev_route[counter-1], sizeof(ipv6_addr_t));
DEBUGF("Route size: %d\n", srh_header->hdrextlen);
}
else {
srh_header->hdrextlen = 0;
}
/* actually build SRH-header */
memcpy(&srh_header->nextheader, &(act_ipv6_hdr->nextheader), sizeof(uint8_t));
srh_header->routing_type = 3;
srh_header->segments_left = counter - 1;
/* cmpri & cmpre are both 0, because by now there is only support for full addresses */
srh_header->cmpri = 0;
srh_header->cmpre = 0;
/* since the route has exactly the length of its intermediate nodes, padding is zero. */
srh_header->pad = 0;
srh_header->reserved = 0;
/* set the destination-address in ipv6-buf->destaddr, which is the pointer of child */
return srh_header;
}
#endif
void rpl_remove_srh_header(ipv6_hdr_t *ipv6_header, const void *buf, uint8_t nextheader)
{
ipv6_hdr_t *temp_ipv6_header = ((ipv6_hdr_t *)(&srh_send_buffer));
uint8_t *payload = &srh_send_buffer[IPV6_HDR_LEN];
memcpy(temp_ipv6_header, ipv6_header, sizeof(ipv6_hdr_t));
int msg_length = NTOHS(ipv6_header->length) - sizeof(ipv6_srh_t);
temp_ipv6_header->length = HTONS(msg_length);
temp_ipv6_header->nextheader = nextheader;
memcpy(payload, buf, msg_length);
DEBUGF("Source routing header extraction finished.\n");
DEBUGF("Dest is now: %s\n",
ipv6_addr_to_str(addr_str, IPV6_MAX_ADDR_STR_LEN, &temp_ipv6_header->destaddr));
srh_m_send.content.ptr = (char *) srh_send_buffer;
msg_send_receive(&srh_m_send, &srh_m_recv, ip_process_pid);
}
int rpl_srh_sendto(const void *buf, uint16_t len,
ipv6_addr_t *src, ipv6_addr_t *dest, ipv6_srh_t *srh_header, uint8_t srh_length)
{
ipv6_hdr_t *temp_ipv6_header = ((ipv6_hdr_t *)(&srh_send_buffer));
ipv6_srh_t *current_packet = ((ipv6_srh_t *)(&srh_send_buffer[IPV6_HDR_LEN]));
uint8_t *payload = &srh_send_buffer[IPV6_HDR_LEN + srh_length];
memcpy(&(temp_ipv6_header->destaddr), dest, sizeof(ipv6_addr_t));
memcpy(&(temp_ipv6_header->srcaddr), src, sizeof(ipv6_addr_t));
memcpy(current_packet, srh_header, srh_length);
memcpy(payload, buf, len);
uint16_t plength = srh_length + len;
DEBUGF("Build SRH package finished. Going to send it.\n");
DEBUGF("SRH-length: %d\n", current_packet->hdrextlen);
DEBUGF("My payload length: %d\n", plength);
return ipv6_sendto(&temp_ipv6_header->destaddr, IPV6_PROTO_NUM_SRH,
(uint8_t *)current_packet, plength, &temp_ipv6_header->destaddr);
}
#endif