1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2024-12-29 04:50:03 +01:00
RIOT/drivers/kw2xrf/kw2xrf.c

1174 lines
33 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 2015 PHYTEC Messtechnik GmbH
*
* This file is subject to the terms and conditions of the GNU Lesser General
* Public License v2.1. See the file LICENSE in the top level directory for more
* details.
*/
/**
* @ingroup kw2xrf
* @{
* @file
* @brief Basic functionality of kw2xrf driver
*
* @author Johann Fischer <j.fischer@phytec.de>
* @author Jonas Remmert <j.remmert@phytec.de>
* @}
*/
#include "panic.h"
#include "kw2xrf.h"
#include "kw2xrf_spi.h"
#include "kw2xrf_reg.h"
#include "mutex.h"
#include "msg.h"
#include "periph/gpio.h"
#include "net/ng_netbase.h"
#include "net/ng_ieee802154.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/**
* @brief Internal driver event type in case of an unexpected interrupt
*/
#define ISR_EVENT_UNKNOWN (0x0020)
/* Modem_PA_PWR Register (PA Power Control) has a valid range from 3-31 */
#define MKW2XDRF_PA_RANGE_MAX 31 /**< Maximum value of PA Power Control Register */
#define MKW2XDRF_PA_RANGE_MIN 3 /**< Minimum value of PA Power Control Register */
/* PLL integer lookup table */
static const uint8_t pll_int_lt[16] = {
11, 11, 11, 11,
11, 11, 12, 12,
12, 12, 12, 12,
13, 13, 13, 13
};
/* PLL frequency fractional lookup table */
static const uint16_t pll_frac_lt[16] = {
10240, 20480, 30720, 40960,
51200, 61440, 6144, 16384,
26624, 36864, 47104, 57344,
2048, 12288, 22528, 32768
};
static const uint8_t pow_lt[44] = {
3, 4, 4, 5,
6, 6, 7, 7,
8, 9, 9, 10,
11, 11, 12, 13,
13, 14, 14, 15,
16, 16, 17, 18,
18, 19, 20, 20,
21, 21, 22, 23,
23, 24, 25, 25,
26, 27, 27, 28,
28, 29, 30, 31
};
static const int level_lt[29] = {
-35, -34, -32, -31,
-29, -28, -26, -25,
-23, -22, -20, -19,
-17, -16, -14, -13,
-11, -10, -8, -7,
-5, -4, -2, -1,
1, 2, 4, 5,
7
};
static gpio_t kw2xrf_gpio_int;
void kw2xrf_set_option(kw2xrf_t *dev, uint16_t option, bool state);
int kw2xrf_set_tx_power(kw2xrf_t *dev, int8_t *val, size_t len)
{
if (val[0] > MKW2XDRF_OUTPUT_POWER_MAX) {
val[0] = MKW2XDRF_OUTPUT_POWER_MAX;
}
if (val[0] < MKW2XDRF_OUTPUT_POWER_MIN) {
val[0] = MKW2XDRF_OUTPUT_POWER_MIN;
}
uint8_t level = pow_lt[val[0] - MKW2XDRF_OUTPUT_POWER_MIN];
kw2xrf_write_dreg(MKW2XDM_PA_PWR, MKW2XDM_PA_PWR(level));
return 2;
}
int kw2xrf_get_channel(kw2xrf_t *dev, uint8_t *val, size_t max)
{
if (max < 2) {
return -EOVERFLOW;
}
uint8_t pll_int = kw2xrf_read_dreg(MKW2XDM_PLL_INT0);
uint16_t pll_frac = kw2xrf_read_dreg(MKW2XDM_PLL_FRAC0_LSB);
pll_frac |= ((uint16_t)kw2xrf_read_dreg(MKW2XDM_PLL_FRAC0_MSB) << 8);
for (int i = 0; i < 16; i++) {
if ((pll_frac_lt[i] == pll_frac) && (pll_int_lt[i] == pll_int)) {
val[0] = i + 11;
val[1] = 0;
return 2;
}
}
return -EINVAL;
}
int kw2xrf_get_sequence(void)
{
int reg = 0;
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= MKW2XDM_PHY_CTRL1_XCVSEQ_MASK;
return reg;
}
void kw2xrf_set_sequence(kw2xrf_t *dev, kw2xrf_physeq_t seq)
{
uint8_t reg = 0;
/* Only interrupt interruptable states */
uint8_t curr_seq = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
curr_seq &= (MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
if ((curr_seq == XCVSEQ_RECEIVE) || (curr_seq == XCVSEQ_CONTINUOUS_CCA)) {
/* Clear all pending interrupts */
gpio_irq_disable(kw2xrf_gpio_int);
/* abort any ongoing sequence */
DEBUG("kw2xrf_tx: abort SEQ_STATE: %x\n", kw2xrf_read_dreg(MKW2XDM_SEQ_STATE));
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
/* Mask all possible interrupts */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL3);
reg |= MKW2XDM_PHY_CTRL3_WAKE_MSK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL3, reg);
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, 0x7f);
kw2xrf_write_dreg(MKW2XDM_IRQSTS2, 0x03);
kw2xrf_write_dreg(MKW2XDM_IRQSTS3, 0xff);
gpio_irq_enable(kw2xrf_gpio_int);
}
#ifdef DEVELHELP
uint16_t max_tries = 0;
#endif
/* Wait for all other states finish */
while (kw2xrf_read_dreg(MKW2XDM_SEQ_STATE)) {
#ifdef DEVELHELP
max_tries++;
/* At 10MHz SPI-Clock, 40000 should be in the magnitue of 0.1s */
if (max_tries == 40000) {
DEBUG("kw2xrf_error: device does not finish sequence\n");
core_panic(-EBUSY, "kw2xrf_error: device does not finish sequence");
}
#endif
}
/* For all sequences only enable SEQ-irq will be set when sequence completed */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL2);
reg &= ~(MKW2XDM_PHY_CTRL2_SEQMSK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL2, reg);
/* Progrmm new sequence */
switch (seq) {
case XCVSEQ_IDLE:
dev->state = NETCONF_STATE_SLEEP;
break;
case XCVSEQ_RECEIVE:
dev->state = NETCONF_STATE_IDLE;
break;
case XCVSEQ_TRANSMIT:
dev->state = NETCONF_STATE_TX;
break;
case XCVSEQ_CCA:
dev->state = NETCONF_STATE_TX;
break;
case XCVSEQ_TX_RX:
dev->state = NETCONF_STATE_TX;
break;
case XCVSEQ_CONTINUOUS_CCA:
dev->state = NETCONF_STATE_TX;
break;
default:
DEBUG("kw2xrf: undefined state assigned to phy\n");
dev->state = NETCONF_STATE_IDLE;
}
/* Mapping of TX-sequences depending on AUTOACK flag */
/* TODO: This should only used in combination with
* an CSMA-MAC layer. Currently not working
*/
/*if((seq == XCVSEQ_TRANSMIT) || (seq == XCVSEQ_TX_RX)) {
if((dev->option) & KW2XRF_OPT_AUTOACK) {
seq = XCVSEQ_TX_RX;
}
else {
seq = XCVSEQ_TRANSMIT;
}
}*/
DEBUG("kw2xrf: Set sequence to %i\n", seq);
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_XCVSEQ_MASK);
reg |= MKW2XDM_PHY_CTRL1_XCVSEQ(seq);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
}
int kw2xrf_set_channel(kw2xrf_t *dev, uint8_t *val, size_t len)
{
/* Save old sequence to restore this state later */
uint8_t old_seq = kw2xrf_get_sequence();
if (old_seq) {
kw2xrf_set_sequence(dev, XCVSEQ_IDLE);
}
if ((val[0] < 11) || (val[0] > 26)) {
DEBUG("kw2xrf: Invalid channel %i set. Valid channels are 11 through 26\n", val[0]);
return -ENOTSUP;
}
if ((len != 2) || (val[1] != 0)) {
DEBUG("kw2xrf: set channel failed, len: %u, val[0]:%u\n", len, val[0]);
return -EINVAL;
}
/*
* Fc = 2405 + 5(k - 11) , k = 11,12,...,26
*
* Equation for PLL frequency, MKW2xD Reference Manual, p.255 :
* F = ((PLL_INT0 + 64) + (PLL_FRAC0/65536))32MHz
*
*/
uint8_t tmp = val[0] - 11;
kw2xrf_write_dreg(MKW2XDM_PLL_INT0, MKW2XDM_PLL_INT0_VAL(pll_int_lt[tmp]));
kw2xrf_write_dreg(MKW2XDM_PLL_FRAC0_LSB, (uint8_t)pll_frac_lt[tmp]);
kw2xrf_write_dreg(MKW2XDM_PLL_FRAC0_MSB, (uint8_t)(pll_frac_lt[tmp] >> 8));
DEBUG("kw2xrf: set channel to %u\n", val[0]);
if (old_seq) {
kw2xrf_set_sequence(dev, old_seq);
}
return 2;
}
void kw2xrf_irq_handler(void *args)
{
msg_t msg;
kw2xrf_t *dev = (kw2xrf_t *)args;
/* notify driver thread about the interrupt */
msg.type = NG_NETDEV_MSG_TYPE_EVENT;
msg_send_int(&msg, dev->mac_pid);
}
/* Set up interrupt sources, triggered by the radio-module */
void kw2xrf_init_interrupts(kw2xrf_t *dev, gpio_t int_pin)
{
/* Clear all pending interrupts */
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, 0x7f);
kw2xrf_write_dreg(MKW2XDM_IRQSTS2, 0x03);
kw2xrf_write_dreg(MKW2XDM_IRQSTS3, 0xff);
/* Disable all interrups:
* Selectively enable only one interrupt source selectively in sequence manager.
* After reset state all interrupts are disabled, except WAKE_IRQ.
*/
int reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL3);
reg |= MKW2XDM_PHY_CTRL3_WAKE_MSK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL3, reg);
/* set up GPIO-pin used for IRQ */
gpio_init_int(int_pin, GPIO_NOPULL, GPIO_FALLING, &kw2xrf_irq_handler, dev);
}
int kw2xrf_set_pan(kw2xrf_t *dev, uint16_t pan)
{
dev->radio_pan = pan;
uint8_t val_ar[2];
val_ar[1] = (pan >> 8);
val_ar[0] = (uint8_t)pan;
kw2xrf_write_iregs(MKW2XDMI_MACPANID0_LSB, val_ar, 2);
return 2;
}
int kw2xrf_get_proto(kw2xrf_t *dev, uint8_t *val, size_t max)
{
if (max < sizeof(ng_nettype_t)) {
return -EOVERFLOW;
}
memcpy(val, &(dev->proto), sizeof(ng_nettype_t));
return sizeof(ng_nettype_t);
}
int kw2xrf_set_proto(kw2xrf_t *dev, uint8_t *val, size_t len)
{
if (len != sizeof(ng_nettype_t)) {
return -EINVAL;
}
memcpy(&(dev->proto), val, sizeof(ng_nettype_t));
return sizeof(ng_nettype_t);
}
int kw2xrf_on(kw2xrf_t *dev)
{
uint8_t tmp;
/* check modem's crystal oscillator, CLK_OUT shall be 4MHz */
tmp = kw2xrf_read_dreg(MKW2XDM_CLK_OUT_CTRL);
if (tmp != 0x8Bu) {
return -1;
}
DEBUG("SEQ_STATE: %x\n", kw2xrf_read_dreg(MKW2XDM_SEQ_STATE));
/* enable RFon mode */
kw2xrf_write_dreg(MKW2XDM_PWR_MODES,
(MKW2XDM_PWR_MODES_XTALEN | MKW2XDM_PWR_MODES_PMC_MODE));
/* abort any ongoing sequence */
kw2xrf_set_sequence(dev, XCVSEQ_IDLE);
dev->state = NETCONF_STATE_SLEEP;
return 0;
}
int kw2xrf_set_addr(kw2xrf_t *dev, uint16_t addr)
{
uint8_t val_ar[2];
val_ar[0] = (addr >> 8);
val_ar[1] = (uint8_t)addr;
dev->addr_short[0] = val_ar[0];
dev->addr_short[1] = val_ar[1];
kw2xrf_write_iregs(MKW2XDMI_MACSHORTADDRS0_LSB, val_ar, 2);
return sizeof(uint16_t);
}
int kw2xrf_set_addr_long(kw2xrf_t *dev, uint64_t addr)
{
for (int i = 0; i < 8; i++) {
dev->addr_long[i] = (addr >> ((7 - i) * 8));
}
kw2xrf_write_iregs(MKW2XDMI_MACLONGADDRS0_0, (dev->addr_long), 8);
return sizeof(uint64_t);
}
int kw2xrf_init(kw2xrf_t *dev, spi_t spi, spi_speed_t spi_speed,
gpio_t cs_pin, gpio_t int_pin)
{
uint8_t reg = 0;
uint8_t tmp[2];
kw2xrf_gpio_int = int_pin;
/* check device parameters */
if (dev == NULL) {
return -ENODEV;
}
kw2xrf_spi_init(spi, spi_speed, cs_pin);
if (kw2xrf_on(dev) != 0) {
core_panic(0x42, "Could not start MKW2XD radio transceiver");
}
/* General initialization of interrupt sources.
* sets radio to idle mode with all interrupt masked
*/
kw2xrf_init_interrupts(dev, kw2xrf_gpio_int);
/* set device driver */
dev->driver = &kw2xrf_driver;
/* set default option */
dev->proto = KW2XRF_DEFAULT_PROTOCOL;
dev->option = 0;
/* set default short address */
uint16_t addr_conv = KW2XRF_DEFAULT_SHORT_ADDR >> 8;
addr_conv |= (KW2XRF_DEFAULT_SHORT_ADDR << 8) & 0xff00;
kw2xrf_set_addr(dev, addr_conv);
/* set default long address */
kw2xrf_set_addr_long(dev, KW2XRF_DEFAULT_ADDR_LONG);
/* set default TX-Power */
dev->tx_power = KW2XRF_DEFAULT_TX_POWER;
kw2xrf_set_tx_power(dev, &(dev->tx_power), sizeof(dev->tx_power));
/* set default channel */
dev->radio_channel = KW2XRF_DEFAULT_CHANNEL;
tmp[0] = dev->radio_channel;
tmp[1] = 0;
kw2xrf_set_channel(dev, tmp, 2);
/* set default PAN ID */
kw2xrf_set_pan(dev, KW2XRF_DEFAULT_PANID);
/* CCA Setup */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL4);
/* Set up CCA mode 1 (RSSI threshold) */
reg |= MKW2XDM_PHY_CTRL4_CCATYPE(1);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL4, reg);
DEBUG("kw2xrf: Initialized and set to channel %i and pan %i.\n",
KW2XRF_DEFAULT_CHANNEL, KW2XRF_DEFAULT_PANID);
kw2xrf_set_option(dev, KW2XRF_OPT_AUTOACK, true);
kw2xrf_set_option(dev, KW2XRF_OPT_CSMA, true);
/* Switch to Receive state per default after initialization */
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
return 0;
}
int kw2xrf_add_cb(ng_netdev_t *dev, ng_netdev_event_cb_t cb)
{
if (dev == NULL) {
return -ENODEV;
}
if (dev->event_cb != NULL) {
return -ENOBUFS;
}
dev->event_cb = cb;
return 0;
}
int kw2xrf_rem_cb(ng_netdev_t *dev, ng_netdev_event_cb_t cb)
{
if (dev == NULL) {
return -ENODEV;
}
if (dev->event_cb != cb) {
return -ENOENT;
}
dev->event_cb = NULL;
return 0;
}
uint64_t kw2xrf_get_addr_long(kw2xrf_t *dev)
{
uint64_t addr;
uint8_t *ap = (uint8_t *)(&addr);
for (int i = 0; i < 8; i++) {
ap[i] = dev->addr_long[7 - i];
}
return addr;
}
int kw2xrf_get(ng_netdev_t *netdev, ng_netconf_opt_t opt, void *value, size_t max_len)
{
kw2xrf_t *dev = (kw2xrf_t *)netdev;
if (dev == NULL) {
return -ENODEV;
}
switch (opt) {
case NETCONF_OPT_ADDRESS:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = ((dev->addr_short[0] << 8) | dev->addr_short[1]);
return sizeof(uint16_t);
case NETCONF_OPT_ADDRESS_LONG:
if (max_len < sizeof(uint64_t)) {
return -EOVERFLOW;
}
*((uint64_t *)value) = kw2xrf_get_addr_long(dev);
return sizeof(uint64_t);
case NETCONF_OPT_ADDR_LEN:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = 2;
return sizeof(uint16_t);
case NETCONF_OPT_SRC_LEN:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
if (dev->option & KW2XRF_OPT_SRC_ADDR_LONG) {
*((uint16_t *)value) = 8;
}
else {
*((uint16_t *)value) = 2;
}
return sizeof(uint16_t);
case NETCONF_OPT_NID:
if (max_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = dev->radio_pan;
return sizeof(uint16_t);
case NETCONF_OPT_CHANNEL:
return kw2xrf_get_channel(dev, (uint8_t *)value, max_len);
case NETCONF_OPT_PROTO:
return kw2xrf_get_proto(dev, (uint8_t *)value, max_len);
case NETCONF_OPT_STATE:
if (max_len < sizeof(ng_netconf_state_t)) {
return -EOVERFLOW;
}
*(ng_netconf_state_t *)value = *(ng_netconf_state_t *) & (dev->state);
return 0;
case NETCONF_OPT_TX_POWER:
if (max_len < 1) {
return -EOVERFLOW;
}
*(int16_t *)value = dev->tx_power;
return 0;
case NETCONF_OPT_MAX_PACKET_SIZE:
if (max_len < sizeof(int16_t)) {
return -EOVERFLOW;
}
*((uint16_t *)value) = KW2XRF_MAX_PKT_LENGTH;
return sizeof(uint16_t);
case NETCONF_OPT_PRELOADING:
*((ng_netconf_enable_t *)value) = !!(dev->option & KW2XRF_OPT_PRELOADING);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_AUTOACK:
*((ng_netconf_enable_t *)value) = !!(dev->option & KW2XRF_OPT_AUTOACK);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_PROMISCUOUSMODE:
*((ng_netconf_enable_t *)value) = !!(dev->option & KW2XRF_OPT_PROMISCUOUS);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_RAWMODE:
*((ng_netconf_enable_t *)value) = !!(dev->option & KW2XRF_OPT_RAWDUMP);
return sizeof(ng_netconf_enable_t);
default:
return -ENOTSUP;
}
}
void kw2xrf_set_option(kw2xrf_t *dev, uint16_t option, bool state)
{
uint8_t reg;
DEBUG("set option %i to %i\n", option, state);
/* set option field */
if (state) {
dev->option |= option;
/* trigger option specific actions */
switch (option) {
case KW2XRF_OPT_CSMA:
DEBUG("[kw2xrf] opt: enabling CSMA mode\n");
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg |= MKW2XDM_PHY_CTRL1_CCABFRTX;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
case KW2XRF_OPT_PROMISCUOUS:
DEBUG("[kw2xrf] opt: enabling PROMISCUOUS mode\n");
/* disable auto ACKs in promiscuous mode */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_AUTOACK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
/* enable promiscuous mode */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL4);
reg |= MKW2XDM_PHY_CTRL4_PROMISCUOUS;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL4, reg);
break;
case KW2XRF_OPT_AUTOACK:
DEBUG("[kw2xrf] opt: enabling auto ACKs\n");
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg |= MKW2XDM_PHY_CTRL1_AUTOACK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
default:
/* do nothing */
break;
}
}
else {
dev->option &= ~(option);
/* trigger option specific actions */
switch (option) {
case KW2XRF_OPT_CSMA:
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_CCABFRTX);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
case KW2XRF_OPT_PROMISCUOUS:
/* disable promiscuous mode */
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL4);
reg &= ~(MKW2XDM_PHY_CTRL4_PROMISCUOUS);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL4, reg);
/* re-enable AUTOACK only if the option is set */
if (dev->option & KW2XRF_OPT_AUTOACK) {
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg |= MKW2XDM_PHY_CTRL1_AUTOACK;
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
}
break;
case KW2XRF_OPT_AUTOACK:
reg = kw2xrf_read_dreg(MKW2XDM_PHY_CTRL1);
reg &= ~(MKW2XDM_PHY_CTRL1_AUTOACK);
kw2xrf_write_dreg(MKW2XDM_PHY_CTRL1, reg);
break;
default:
/* do nothing */
break;
}
}
}
int kw2xrf_set(ng_netdev_t *netdev, ng_netconf_opt_t opt, void *value, size_t value_len)
{
kw2xrf_t *dev = (kw2xrf_t *)netdev;
if (dev == NULL) {
return -ENODEV;
}
switch (opt) {
case NETCONF_OPT_CHANNEL:
return kw2xrf_set_channel(dev, (uint8_t *)value, value_len);
case NETCONF_OPT_ADDRESS:
if (value_len > sizeof(uint16_t)) {
return -EOVERFLOW;
}
return kw2xrf_set_addr(dev, *((uint16_t *)value));
case NETCONF_OPT_ADDRESS_LONG:
if (value_len > sizeof(uint64_t)) {
return -EOVERFLOW;
}
return kw2xrf_set_addr_long(dev, *((uint64_t *)value));
case NETCONF_OPT_SRC_LEN:
if (value_len > sizeof(uint16_t)) {
return -EOVERFLOW;
}
if (*((uint16_t *)value) == 2) {
kw2xrf_set_option(dev, KW2XRF_OPT_SRC_ADDR_LONG,
false);
}
else if (*((uint16_t *)value) == 8) {
kw2xrf_set_option(dev, KW2XRF_OPT_SRC_ADDR_LONG,
true);
}
else {
return -ENOTSUP;
}
return sizeof(uint16_t);
case NETCONF_OPT_NID:
if (value_len > sizeof(uint16_t)) {
return -EOVERFLOW;
}
return kw2xrf_set_pan(dev, *((uint16_t *)value));
case NETCONF_OPT_TX_POWER:
if (value_len < sizeof(uint16_t)) {
return -EOVERFLOW;
}
kw2xrf_set_tx_power(dev, (int8_t *)value, value_len);
return sizeof(uint16_t);
case NETCONF_OPT_PROTO:
return kw2xrf_set_proto(dev, (uint8_t *)value, value_len);
case NETCONF_OPT_AUTOACK:
/* Set up HW generated automatic ACK after Receive */
kw2xrf_set_option(dev, KW2XRF_OPT_AUTOACK,
((bool *)value)[0]);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_PROMISCUOUSMODE:
kw2xrf_set_option(dev, KW2XRF_OPT_PROMISCUOUS,
((bool *)value)[0]);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_RAWMODE:
kw2xrf_set_option(dev, KW2XRF_OPT_RAWDUMP,
((bool *)value)[0]);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_PRELOADING:
kw2xrf_set_option(dev, KW2XRF_OPT_PRELOADING,
((bool *)value)[0]);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_AUTOCCA:
kw2xrf_set_option(dev, KW2XRF_OPT_CSMA,
((bool *)value)[0]);
return sizeof(ng_netconf_enable_t);
case NETCONF_OPT_STATE:
if (*((ng_netconf_state_t *)value) == NETCONF_STATE_TX) {
DEBUG("kw2xrf: Sending now.\n");
kw2xrf_set_sequence(dev, XCVSEQ_TRANSMIT);
return sizeof(ng_netconf_state_t);
}
else if (*((ng_netconf_state_t *)value) == NETCONF_STATE_SLEEP) {
kw2xrf_set_sequence(dev, XCVSEQ_IDLE);
return sizeof(ng_netconf_state_t);
}
else if (*((ng_netconf_state_t *)value) == NETCONF_STATE_IDLE) {
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
return sizeof(ng_netconf_state_t);
}
/* TODO: Implement Off state here, when LPM functions are implemented */
default:
return -ENOTSUP;
}
}
/* TODO: generalize and move to ng_ieee802154 */
/* TODO: include security header implications */
static size_t _get_frame_hdr_len(uint8_t *mhr)
{
uint8_t tmp;
size_t len = 3;
/* figure out address sizes */
tmp = (mhr[1] & NG_IEEE802154_FCF_DST_ADDR_MASK);
if (tmp == NG_IEEE802154_FCF_DST_ADDR_SHORT) {
len += 4;
}
else if (tmp == NG_IEEE802154_FCF_DST_ADDR_LONG) {
len += 10;
}
else if (tmp != NG_IEEE802154_FCF_DST_ADDR_VOID) {
return 0;
}
tmp = (mhr[1] & NG_IEEE802154_FCF_SRC_ADDR_MASK);
if (tmp == NG_IEEE802154_FCF_SRC_ADDR_VOID) {
return len;
}
else {
if (!(mhr[0] & NG_IEEE802154_FCF_PAN_COMP)) {
len += 2;
}
if (tmp == NG_IEEE802154_FCF_SRC_ADDR_SHORT) {
return (len + 2);
}
else if (tmp == NG_IEEE802154_FCF_SRC_ADDR_LONG) {
return (len + 8);
}
}
return 0;
}
/* TODO: generalize and move to ng_ieee802154 */
static ng_pktsnip_t *_make_netif_hdr(uint8_t *mhr)
{
uint8_t tmp;
uint8_t *addr;
uint8_t src_len, dst_len;
ng_pktsnip_t *snip;
ng_netif_hdr_t *hdr;
/* figure out address sizes */
tmp = mhr[1] & NG_IEEE802154_FCF_SRC_ADDR_MASK;
if (tmp == NG_IEEE802154_FCF_SRC_ADDR_SHORT) {
src_len = 2;
}
else if (tmp == NG_IEEE802154_FCF_SRC_ADDR_LONG) {
src_len = 8;
}
else if (tmp == 0) {
src_len = 0;
}
else {
return NULL;
}
tmp = mhr[1] & NG_IEEE802154_FCF_DST_ADDR_MASK;
if (tmp == NG_IEEE802154_FCF_DST_ADDR_SHORT) {
dst_len = 2;
}
else if (tmp == NG_IEEE802154_FCF_DST_ADDR_LONG) {
dst_len = 8;
}
else if (tmp == 0) {
dst_len = 0;
}
else {
return NULL;
}
/* allocate space for header */
snip = ng_pktbuf_add(NULL, NULL, sizeof(ng_netif_hdr_t) + src_len + dst_len,
NG_NETTYPE_NETIF);
if (snip == NULL) {
return NULL;
}
/* fill header */
hdr = (ng_netif_hdr_t *)snip->data;
ng_netif_hdr_init(hdr, src_len, dst_len);
if (dst_len > 0) {
tmp = 5 + dst_len;
addr = ng_netif_hdr_get_dst_addr(hdr);
for (int i = 0; i < dst_len; i++) {
addr[i] = mhr[5 + (dst_len - i) - 1];
}
}
else {
tmp = 3;
}
if (!(mhr[0] & NG_IEEE802154_FCF_PAN_COMP)) {
tmp += 2;
}
if (src_len > 0) {
addr = ng_netif_hdr_get_src_addr(hdr);
for (int i = 0; i < src_len; i++) {
addr[i] = mhr[tmp + (src_len - i) - 1];
}
}
return snip;
}
void _receive_data(kw2xrf_t *dev)
{
size_t pkt_len, hdr_len;
ng_pktsnip_t *hdr, *payload = NULL;
ng_netif_hdr_t *netif;
/* get size of the received packet */
pkt_len = kw2xrf_read_dreg(MKW2XDM_RX_FRM_LEN);
/* read PSDU */
kw2xrf_read_fifo(dev->buf, pkt_len + 1);
/* abort here already if no event callback is registered */
if (!dev->event_cb) {
return;
}
/* If RAW-mode is selected direclty forward pkt, MAC does the rest */
if (dev->option & KW2XRF_OPT_RAWDUMP) {
payload = ng_pktbuf_add(NULL, NULL, pkt_len, NG_NETTYPE_UNDEF);
if (payload == NULL) {
DEBUG("kw2xf: error: unable to allocate RAW data\n");
return;
}
payload->data = dev->buf;
dev->event_cb(NETDEV_EVENT_RX_COMPLETE, payload);
return;
}
/* get FCF field and compute 802.15.4 header length */
hdr_len = _get_frame_hdr_len(dev->buf);
if (hdr_len == 0) {
DEBUG("kw2xrf error: unable parse incoming frame header\n");
return;
}
/* read the rest of the header and parse the netif header from it */
hdr = _make_netif_hdr(dev->buf);
if (hdr == NULL) {
DEBUG("kw2xrf error: unable to allocate netif header\n");
return;
}
/* fill missing fields in netif header */
netif = (ng_netif_hdr_t *)hdr->data;
netif->if_pid = thread_getpid();
netif->lqi = dev->buf[pkt_len];
/* lqi and rssi are directly related to each other in the kw2x-device.
* The rssi-unit is dBm and in this case alwaysnegative, nevertheless
* a positive value is reported.
*/
netif->rssi = -((netif->lqi) - 286.6) / 2.69333;
payload = ng_pktbuf_add(hdr, (void *) & (dev->buf[hdr_len]),
pkt_len - hdr_len - 2, dev->proto);
if (payload == NULL) {
DEBUG("kw2xrf: ERROR allocating payload in packet buffer on RX\n");
ng_pktbuf_release(hdr);
return;
}
dev->event_cb(NETDEV_EVENT_RX_COMPLETE, payload);
}
void kw2xrf_isr_event(ng_netdev_t *netdev, uint32_t event_type)
{
kw2xrf_t *dev = (kw2xrf_t *)netdev;
uint8_t irqst1 = kw2xrf_read_dreg(MKW2XDM_IRQSTS1);
uint8_t irqst2 = kw2xrf_read_dreg(MKW2XDM_IRQSTS2);
if ((irqst1 & MKW2XDM_IRQSTS1_RXIRQ) && (irqst1 & MKW2XDM_IRQSTS1_SEQIRQ)) {
/* RX */
DEBUG("kw2xrf: RX Int\n");
_receive_data(dev);
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, MKW2XDM_IRQSTS1_RXIRQ | MKW2XDM_IRQSTS1_SEQIRQ);
}
else if ((irqst1 & MKW2XDM_IRQSTS1_TXIRQ) && (irqst1 & MKW2XDM_IRQSTS1_SEQIRQ)) {
/* TX_Complete */
/* Device is automatically in Radio-idle state when TX is done */
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
DEBUG("kw2xrf: TX Complete\n");
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, MKW2XDM_IRQSTS1_TXIRQ | MKW2XDM_IRQSTS1_SEQIRQ);
}
else if ((irqst1 & MKW2XDM_IRQSTS1_CCAIRQ) && (irqst1 & MKW2XDM_IRQSTS1_SEQIRQ)) {
/* TX_Started (CCA_done) */
if (irqst2 & MKW2XDM_IRQSTS2_CCA) {
DEBUG("kw2xrf: CCA done -> Channel busy\n");
}
DEBUG("kw2xrf: CCA done -> Channel idle\n");
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, MKW2XDM_IRQSTS1_CCAIRQ | MKW2XDM_IRQSTS1_SEQIRQ);
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
}
else {
/* Unknown event */
/* Clear all interrupts to prevent ISR-loop */
kw2xrf_write_dreg(MKW2XDM_IRQSTS1, 0x7f);
kw2xrf_write_dreg(MKW2XDM_IRQSTS2, 0x03);
kw2xrf_write_dreg(MKW2XDM_IRQSTS3, 0xff);
DEBUG("kw2xrf_isr_event: unknown Interrupt\n");
kw2xrf_set_sequence(dev, XCVSEQ_RECEIVE);
return;
}
}
/* TODO: Move to ng_ieee802.15.4 as soon as ready */
uint8_t _assemble_tx_buf(kw2xrf_t *dev, ng_pktsnip_t *pkt)
{
ng_netif_hdr_t *hdr;
hdr = (ng_netif_hdr_t *)pkt->data;
int index = 0;
if (dev == NULL) {
ng_pktbuf_release(pkt);
return -ENODEV;
}
/* get netif header check address length */
hdr = (ng_netif_hdr_t *)pkt->data;
if (!(hdr->dst_l2addr_len == 2 || hdr->dst_l2addr_len == 8)) {
ng_pktbuf_release(pkt);
return -ENOMSG;
}
/* FCF, set up data frame, request for ack, panid_compression */
/* TODO: Currently we don´t request for Ack in this device.
* since this is a soft_mac device this has to be
* handled in a upcoming CSMA-MAC layer.
*/
/*if(dev->option & KW2XRF_OPT_AUTOACK) {
dev->buf[1] = 0x61;
}
else {
dev->buf[1] = 0x51;
}*/
dev->buf[1] = 0x51;
/* set sequence number */
dev->buf[3] = dev->seq_nr++;
index = 4;
if (hdr->dst_l2addr_len == 2) {
/* set to short addressing mode */
dev->buf[2] = 0x88;
/* set destination pan_id */
dev->buf[index++] = (uint8_t)((dev->radio_pan) & 0xff);
dev->buf[index++] = (uint8_t)((dev->radio_pan) >> 8);
/* set destination address, byte order is inverted */
dev->buf[index++] = (ng_netif_hdr_get_dst_addr(hdr))[1];
dev->buf[index++] = (ng_netif_hdr_get_dst_addr(hdr))[0];
/* set source pan_id */
//dev->buf[index++] = (uint8_t)((dev->radio_pan) >> 8);
//dev->buf[index++] = (uint8_t)((dev->radio_pan) & 0xff);
/* set source address */
dev->buf[index++] = (uint8_t)(dev->addr_short[0]);
dev->buf[index++] = (uint8_t)(dev->addr_short[1]);
}
if (hdr->dst_l2addr_len == 8) {
/* set destination pan_id, wireshark expects it there */
dev->buf[index++] = (uint8_t)((dev->radio_pan) & 0xff);
dev->buf[index++] = (uint8_t)((dev->radio_pan) >> 8);
/* default to use long address mode for src and dst */
dev->buf[2] |= 0xcc;
/* set destination address located directly after ng_ifhrd_t in memory */
memcpy(&(dev->buf)[index], ng_netif_hdr_get_dst_addr(hdr), 8);
index += 8;
/* set source pan_id, wireshark expects it there */
//dev->buf[index++] = (uint8_t)((dev->radio_pan) >> 8);
//dev->buf[index++] = (uint8_t)((dev->radio_pan) & 0xff);
/* set source address */
memcpy(&(dev->buf[index]), dev->addr_long, 8);
index += 8;
}
return index;
}
int kw2xrf_send(ng_netdev_t *netdev, ng_pktsnip_t *pkt)
{
uint8_t index = 0;
kw2xrf_t *dev = (kw2xrf_t *) netdev;
if (pkt == NULL) {
return -ENOMSG;
}
ng_pktsnip_t *payload = pkt->next;
if (netdev == NULL) {
ng_pktbuf_release(pkt);
return -ENODEV;
}
if (pkt->type == NG_NETTYPE_NETIF) {
/* Build header and fills this already into the tx-buf */
index = _assemble_tx_buf(dev, pkt);
DEBUG("Assembled header for NG_NETTYPE_UNDEF to tx-buf, index: %i\n", index);
}
else if (pkt->type == NG_NETTYPE_UNDEF) {
/* IEEE packet is already included in the header,
* no need to build the header manually */
DEBUG("Incoming packet of type NG_NETTYPE_802154: %i\n", index);
DEBUG("size of pktsnip: %i\n", pkt->size);
for (int i = 0; i < pkt->size; i++) {
uint8_t *tmp = pkt->data;
dev->buf[index + i + 1] = tmp[i];
}
/* count bytes */
index += pkt->size;
}
else {
DEBUG("Driver does not support this type of packet\n");
return -ENOTSUP;
}
while (payload) {
/* check we don't exceed FIFO size */
if (index + 2 + payload->size > KW2XRF_MAX_PKT_LENGTH) {
ng_pktbuf_release(pkt);
DEBUG("Packet exceeded FIFO size.\n");
return -ENOBUFS;
}
for (int i = 0; i < payload->size; i++) {
uint8_t *tmp = payload->data;
dev->buf[index + i] = tmp[i];
}
/* count bytes */
index += payload->size;
/* next snip */
payload = payload->next;
}
dev->buf[0] = index + 1; /* set packet size */
ng_pktbuf_release(pkt);
DEBUG("kw2xrf: packet with size %i loaded to tx_buf\n", dev->buf[0]);
kw2xrf_write_fifo(dev->buf, dev->buf[0]);
if ((dev->option & KW2XRF_OPT_PRELOADING) == NETCONF_DISABLE) {
DEBUG("kw2xrf: Sending now.\n");
kw2xrf_set_sequence(dev, XCVSEQ_TRANSMIT);
}
return index;
}
/* implementation of the netdev interface */
const ng_netdev_driver_t kw2xrf_driver = {
.send_data = kw2xrf_send,
.add_event_callback = kw2xrf_add_cb,
.rem_event_callback = kw2xrf_rem_cb,
.get = kw2xrf_get,
.set = kw2xrf_set,
.isr_event = kw2xrf_isr_event,
};