1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-16 12:52:43 +01:00
RIOT/cpu/stm32_common/periph/i2c_2.c
Martine Lenders 6f78a7f331 stm32_common: i2c_2: fix for -Wunused-function
This came up when compiling an application for a STM32-based board
with LLVM/clang. The function is not used if I²C is not provided.
2018-08-03 16:12:52 +02:00

560 lines
14 KiB
C

/*
* Copyright (C) 2017 Kaspar Schleiser <kaspar@schleiser.de>
* 2014 FU Berlin
* 2018 Inria
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_stm32_common
* @ingroup drivers_periph_i2c
* @{
*
* @file
* @brief Low-level I2C driver implementation
*
* This driver supports the STM32 F4 families.
*
* @note This implementation only implements the 7-bit addressing mode.
*
* @author Peter Kietzmann <peter.kietzmann@haw-hamburg.de>
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Thomas Eichinger <thomas.eichinger@fu-berlin.de>
* @author Kaspar Schleiser <kaspar@schleiser.de>
* @author Toon Stegen <toon.stegen@altran.com>
* @author Vincent Dupont <vincent@otakeys.com>
* @author Víctor Ariño <victor.arino@triagnosys.com>
* @author Alexandre Abadie <alexandre.abadie@inria.fr>
*
* @}
*/
#include <stdint.h>
#include <errno.h>
#include "cpu.h"
#include "irq.h"
#include "mutex.h"
#include "pm_layered.h"
#include "periph_conf.h"
#include "periph/gpio.h"
#include "periph/i2c.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
#define I2C_IRQ_PRIO (1)
#define I2C_FLAG_READ (I2C_READ)
#define I2C_FLAG_WRITE (0)
#define TICK_TIMEOUT (0xFFFF)
#define ERROR_FLAG (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR)
/* static function definitions */
static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr);
static inline int _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag, uint8_t flags);
static inline void _clear_addr(I2C_TypeDef *dev);
static inline int _write(I2C_TypeDef *dev, const uint8_t *data, int length);
static inline int _stop(I2C_TypeDef *dev);
static inline int _wait_ready(I2C_TypeDef *dev);
/**
* @brief Array holding one pre-initialized mutex for each I2C device
*/
static mutex_t locks[I2C_NUMOF];
void i2c_init(i2c_t dev)
{
assert(dev < I2C_NUMOF);
DEBUG("[i2c] init: initializing device\n");
mutex_init(&locks[dev]);
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
uint32_t ccr;
/* read speed configuration */
switch (i2c_config[dev].speed) {
case I2C_SPEED_LOW:
/* 10Kbit/s */
ccr = i2c_config[dev].clk / 20000;
break;
case I2C_SPEED_NORMAL:
/* 100Kbit/s */
ccr = i2c_config[dev].clk / 200000;
break;
case I2C_SPEED_FAST:
ccr = i2c_config[dev].clk / 800000;
break;
default:
return;
}
periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
NVIC_SetPriority(i2c_config[dev].irqn, I2C_IRQ_PRIO);
NVIC_EnableIRQ(i2c_config[dev].irqn);
/* configure pins */
DEBUG("[i2c] init: configuring pins\n");
gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU);
gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU);
#ifdef CPU_FAM_STM32F1
gpio_init_af(i2c_config[dev].scl_pin, GPIO_AF_OUT_OD);
gpio_init_af(i2c_config[dev].sda_pin, GPIO_AF_OUT_OD);
#else
gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af);
gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af);
#endif
/* configure device */
DEBUG("[i2c] init: configuring device\n");
_i2c_init(i2c, i2c_config[dev].clk, ccr);
#if defined(CPU_FAM_STM32F4)
/* make sure the analog filters don't hang -> see errata sheet 2.14.7 */
if (i2c->SR2 & I2C_SR2_BUSY) {
DEBUG("[i2c] init: line busy after reset, toggle pins now\n");
/* disable peripheral */
i2c->CR1 &= ~I2C_CR1_PE;
/* toggle both pins to reset analog filter */
gpio_init(i2c_config[dev].scl_pin, GPIO_OD);
gpio_init(i2c_config[dev].sda_pin, GPIO_OD);
gpio_set(i2c_config[dev].sda_pin);
gpio_set(i2c_config[dev].scl_pin);
gpio_clear(i2c_config[dev].sda_pin);
gpio_clear(i2c_config[dev].scl_pin);
gpio_set(i2c_config[dev].sda_pin);
gpio_set(i2c_config[dev].scl_pin);
/* reset pins for alternate function */
gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU);
gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU);
gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af);
gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af);
/* make peripheral soft reset */
i2c->CR1 |= I2C_CR1_SWRST;
i2c->CR1 &= ~I2C_CR1_SWRST;
/* enable device */
_i2c_init(i2c, i2c_config[dev].clk, ccr);
}
#endif
}
static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr)
{
/* disable device and set ACK bit */
i2c->CR1 = I2C_CR1_ACK;
/* configure I2C clock */
i2c->CR2 = (clk / 1000000) | I2C_CR2_ITERREN;
i2c->CCR = ccr;
i2c->TRISE = (clk / 1000000) + 1;
/* configure device */
/* configure device */
i2c->OAR1 |= (1 << 14); /* datasheet: bit 14 should be kept 1 */
i2c->OAR1 &= ~I2C_OAR1_ADDMODE; /* make sure we are in 7-bit address mode */
/* Clear flags */
i2c->SR1 &= ~ERROR_FLAG;
/* enable device */
i2c->CR1 |= I2C_CR1_PE;
}
int i2c_acquire(i2c_t dev)
{
assert(dev < I2C_NUMOF);
mutex_lock(&locks[dev]);
#ifdef STM32_PM_STOP
/* block STOP mode */
pm_block(STM32_PM_STOP);
#endif
periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
return 0;
}
int i2c_release(i2c_t dev)
{
assert(dev < I2C_NUMOF);
uint16_t tick = TICK_TIMEOUT;
while ((i2c_config[dev].dev->SR2 & I2C_SR2_BUSY) && tick--) {}
periph_clk_dis(i2c_config[dev].bus, i2c_config[dev].rcc_mask);
#ifdef STM32_PM_STOP
/* unblock STOP mode */
pm_unblock(STM32_PM_STOP);
#endif
mutex_unlock(&locks[dev]);
return 0;
}
int i2c_read_bytes(i2c_t dev, uint16_t address, void *data, size_t length,
uint8_t flags)
{
assert(dev < I2C_NUMOF);
if (flags & I2C_ADDR10) {
return -EOPNOTSUPP;
}
uint16_t tick = TICK_TIMEOUT;
size_t n = length;
char *in = (char *)data;
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
int ret = 0;
if (!(flags & I2C_NOSTART)) {
DEBUG("[i2c] read_bytes: Send Slave address and wait for ADDR == 1\n");
ret = _start(i2c, address, I2C_FLAG_READ, flags);
if (ret < 0) {
return ret;
}
if (length == 1 && !(flags & I2C_NOSTOP)) {
DEBUG("[i2c] read_bytes: Set ACK = 0\n");
i2c->CR1 &= ~(I2C_CR1_ACK);
}
else {
i2c->CR1 |= I2C_CR1_ACK;
}
_clear_addr(i2c);
}
else {
if (length == 1 && !(flags & I2C_NOSTOP)) {
DEBUG("[i2c] read_bytes: Set ACK = 0\n");
i2c->CR1 &= ~(I2C_CR1_ACK);
}
else {
i2c->CR1 |= I2C_CR1_ACK;
}
}
while (n--) {
/* wait for reception to complete */
while (!(i2c->SR1 & I2C_SR1_RXNE) && tick--) {
if ((i2c->SR1 & ERROR_FLAG) || !tick) {
return -ETIMEDOUT;
}
}
if (n == 1 && !(flags & I2C_NOSTOP)) {
/* disable ACK */
i2c->CR1 &= ~(I2C_CR1_ACK);
}
/* read byte */
*(in++) = i2c->DR;
}
if (!(flags & I2C_NOSTOP)) {
/* set STOP */
i2c->CR1 |= (I2C_CR1_STOP);
tick = TICK_TIMEOUT;
while ((i2c->CR1 & I2C_CR1_STOP) && tick--) {
if (!tick) {
return -ETIMEDOUT;
}
}
}
return ret;
}
int i2c_read_regs(i2c_t dev, uint16_t address, uint16_t reg, void *data,
size_t length, uint8_t flags)
{
assert(dev < I2C_NUMOF);
uint16_t tick = TICK_TIMEOUT;
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
if ((flags & I2C_REG16) || (flags & I2C_ADDR10)) {
return -EOPNOTSUPP;
}
int ret = _wait_ready(i2c);
if (ret < 0) {
return ret;
}
if (!(flags & I2C_NOSTART)) {
/* send start condition and slave address */
DEBUG("[i2c] read_regs: Send slave address and clear ADDR flag\n");
ret = _start(i2c, address, I2C_FLAG_WRITE, flags);
if (ret < 0) {
return ret;
}
}
DEBUG("[i2c] read_regs: Write reg into DR\n");
_clear_addr(i2c);
while (!(i2c->SR1 & I2C_SR1_TXE) && tick--) {
if ((i2c->SR1 & ERROR_FLAG) || !tick) {
return -ETIMEDOUT;
}
}
i2c->DR = reg;
tick = TICK_TIMEOUT;
while (!(i2c->SR1 & I2C_SR1_TXE) && tick--) {
if ((i2c->SR1 & ERROR_FLAG) || !tick) {
return -ETIMEDOUT;
}
}
DEBUG("[i2c] read_regs: Now start a read transaction\n");
return i2c_read_bytes(dev, address, data, length, flags);
}
int i2c_write_bytes(i2c_t dev, uint16_t address, const void *data,
size_t length, uint8_t flags)
{
assert(dev < I2C_NUMOF);
if (flags & I2C_ADDR10) {
return -EOPNOTSUPP;
}
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
int ret = _wait_ready(i2c);
if (ret != 0) {
return ret;
}
if (!(flags & I2C_NOSTART)) {
/* start transmission and send slave address */
DEBUG("[i2c] write_bytes: sending start sequence\n");
ret = _start(i2c, address, I2C_FLAG_WRITE, flags);
if (ret < 0) {
return ret;
}
}
_clear_addr(i2c);
/* send out data bytes */
ret = _write(i2c, data, length);
if (ret < 0) {
return ret;
}
if (!(flags & I2C_NOSTOP)) {
/* end transmission */
DEBUG("[i2c] write_bytes: Ending transmission\n");
ret = _stop(i2c);
if (ret < 0) {
return ret;
}
DEBUG("[i2c] write_bytes: STOP condition was send out\n");
}
return ret;
}
int i2c_write_regs(i2c_t dev, uint16_t address, uint16_t reg, const void *data,
size_t length, uint8_t flags)
{
assert(dev < I2C_NUMOF);
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
if ((flags & I2C_REG16) || (flags & I2C_ADDR10)) {
return -EOPNOTSUPP;
}
int ret = _wait_ready(i2c);
if (ret != 0) {
return ret;
}
if (!(flags & I2C_NOSTART)) {
/* start transmission and send slave address */
ret = _start(i2c, address, I2C_FLAG_WRITE, flags);
if (ret < 0) {
return ret;
}
}
_clear_addr(i2c);
/* send register address and wait for complete transfer to be finished*/
ret = _write(i2c, (uint8_t *)&reg, 1);
if (ret < 0) {
return ret;
}
/* write data to register */
ret = _write(i2c, data, length);
if (ret < 0) {
return ret;
}
if (!(flags & I2C_NOSTOP)) {
/* finish transfer */
ret = _stop(i2c);
if (ret < 0) {
return ret;
}
}
return ret;
}
static int _start(I2C_TypeDef *i2c, uint8_t address, uint8_t rw_flag, uint8_t flags)
{
(void)flags;
/* Clear flags */
i2c->SR1 &= ~ERROR_FLAG;
/* generate start condition */
i2c->CR1 |= I2C_CR1_START;
/* Wait for SB flag to be set */
while (!(i2c->SR1 & I2C_SR1_SB)) {}
/* send address and read/write flag */
i2c->DR = (address << 1) | rw_flag;
uint16_t tick = TICK_TIMEOUT;
/* Wait for ADDR flag to be set */
while (!(i2c->SR1 & I2C_SR1_ADDR) && tick--) {
if ((i2c->SR1 & ERROR_FLAG) || !tick) {
i2c->CR1 |= I2C_CR1_STOP;
return -EIO;
}
}
return 0;
}
static inline void _clear_addr(I2C_TypeDef *i2c)
{
i2c->SR1;
i2c->SR2;
}
static inline int _write(I2C_TypeDef *i2c, const uint8_t *data, int length)
{
DEBUG("[i2c] write: Looping through bytes\n");
for (int i = 0; i < length; i++) {
/* write data to data register */
i2c->DR = data[i];
DEBUG("[i2c] write: Written %i byte to data reg, now waiting for DR "
"to be empty again\n", i);
uint16_t tick = TICK_TIMEOUT;
/* wait for transfer to finish */
while (!(i2c->SR1 & I2C_SR1_TXE) && tick--) {
if ((i2c->SR1 & ERROR_FLAG) || !tick) {
return -ETIMEDOUT;
}
}
DEBUG("[i2c] write: DR is now empty again\n");
}
return 0;
}
static inline int _stop(I2C_TypeDef *i2c)
{
uint16_t tick = TICK_TIMEOUT;
/* make sure last byte was send */
DEBUG("[i2c] write: Wait if last byte hasn't been sent\n");
while (!(i2c->SR1 & I2C_SR1_BTF) && tick--) {
if ((i2c->SR1 & ERROR_FLAG) || !tick) {
return -ETIMEDOUT;
}
}
/* send STOP condition */
i2c->CR1 |= I2C_CR1_STOP;
return 0;
}
static inline int _wait_ready(I2C_TypeDef *i2c)
{
/* wait for device to be ready */
DEBUG("[i2c] wait_ready: Wait for device to be ready\n");
uint16_t tick = TICK_TIMEOUT;
while ((i2c->SR2 & I2C_SR2_BUSY) && tick--) {
if (!tick) {
DEBUG("[i2c] wait_ready: timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
#if I2C_0_ISR || I2C_1_ISR
static inline void irq_handler(i2c_t dev)
{
assert(dev < I2C_NUMOF);
I2C_TypeDef *i2c = i2c_config[dev].dev;
assert(i2c != NULL);
unsigned state = i2c->SR1;
DEBUG("\n\n### I2C ERROR OCCURED ###\n");
DEBUG("status: %08x\n", state);
if (state & I2C_SR1_OVR) {
DEBUG("OVR\n");
}
if (state & I2C_SR1_AF) {
DEBUG("AF\n");
}
if (state & I2C_SR1_ARLO) {
DEBUG("ARLO\n");
}
if (state & I2C_SR1_BERR) {
DEBUG("BERR\n");
}
if (state & I2C_SR1_PECERR) {
DEBUG("PECERR\n");
}
if (state & I2C_SR1_TIMEOUT) {
DEBUG("TIMEOUT\n");
}
if (state & I2C_SR1_SMBALERT) {
DEBUG("SMBALERT\n");
}
core_panic(PANIC_GENERAL_ERROR, "I2C FAULT");
}
#endif
#if I2C_0_ISR
void I2C_0_ISR(void)
{
irq_handler(I2C_DEV(0));
}
#endif /* I2C_0_ISR */
#if I2C_1_ISR
void I2C_1_ISR(void)
{
irq_handler(I2C_DEV(1));
}
#endif /* I2C_1_ISR */