1
0
mirror of https://github.com/RIOT-OS/RIOT.git synced 2025-01-16 11:52:43 +01:00
RIOT/cpu/efm32/periph/uart.c
2018-06-04 18:16:41 +02:00

226 lines
5.7 KiB
C

/*
* Copyright (C) 2015-2017 Freie Universität Berlin
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_efm32
* @ingroup drivers_periph_uart
* @{
*
* @file
* @brief Low-level UART driver implementation.
*
* @author Hauke Petersen <hauke.petersen@fu-berlin.de>
* @author Ryan Kurte <ryankurte@gmail.com>
* @author Bas Stottelaar <basstottelaar@gmail.com>
* @}
*/
#include "cpu.h"
#include "periph/uart.h"
#include "periph/gpio.h"
#include "em_usart.h"
#include "em_usart_utils.h"
#if LOW_POWER_ENABLED && defined(LEUART_COUNT) && LEUART_COUNT > 0
#include "em_leuart.h"
#include "em_leuart_utils.h"
#endif
/**
* @brief Allocate memory to store the callback functions
*/
static uart_isr_ctx_t isr_ctx[UART_NUMOF];
/**
* @brief Check if device is a U(S)ART device.
*/
static inline bool _is_usart(uart_t dev)
{
return ((uint32_t) uart_config[dev].dev) < LEUART0_BASE;
}
int uart_init(uart_t dev, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg)
{
/* check if device is valid */
if (dev >= UART_NUMOF) {
return -1;
}
/* save interrupt callback context */
isr_ctx[dev].rx_cb = rx_cb;
isr_ctx[dev].arg = arg;
/* initialize the pins */
gpio_init(uart_config[dev].rx_pin, GPIO_IN);
gpio_init(uart_config[dev].tx_pin, GPIO_OUT);
/* initialize the UART/USART/LEUART device */
#if LOW_POWER_ENABLED && defined(LEUART_COUNT) && LEUART_COUNT > 0
if (_is_usart(dev)) {
#endif
USART_TypeDef *uart = (USART_TypeDef *) uart_config[dev].dev;
/* enable clocks */
CMU_ClockEnable(cmuClock_HFPER, true);
CMU_ClockEnable(uart_config[dev].cmu, true);
/* reset and initialize peripheral */
USART_InitAsync_TypeDef init = USART_INITASYNC_DEFAULT;
init.enable = usartDisable;
init.baudrate = baudrate;
#if EFM32_UART_MODES
init.databits = USART_DataBits2Def((uart_config[dev].mode >> 0) & 0xf);
init.stopbits = USART_StopBits2Def((uart_config[dev].mode >> 4) & 0xf);
init.parity = USART_Parity2Def((uart_config[dev].mode >> 8) & 0xf);
#endif
USART_InitAsync(uart, &init);
/* configure pin functions */
#ifdef _SILICON_LABS_32B_SERIES_0
uart->ROUTE = (uart_config[dev].loc |
USART_ROUTE_RXPEN |
USART_ROUTE_TXPEN);
#else
uart->ROUTELOC0 = uart_config[dev].loc;
uart->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
#endif
/* enable receive interrupt */
USART_IntEnable(uart, USART_IEN_RXDATAV);
/* enable peripheral */
USART_Enable(uart, usartEnable);
#if LOW_POWER_ENABLED && defined(LEUART_COUNT) && LEUART_COUNT > 0
} else {
LEUART_TypeDef *leuart = (LEUART_TypeDef *) uart_config[dev].dev;
/* enable clocks */
CMU_ClockEnable(cmuClock_CORELE, true);
CMU_ClockEnable(uart_config[dev].cmu, true);
/* reset and initialize peripheral */
LEUART_Init_TypeDef init = LEUART_INIT_DEFAULT;
init.enable = leuartDisable;
init.baudrate = baudrate;
#if EFM32_UART_MODES
init.databits = LEUART_DataBits2Def((uart_config[dev].mode >> 0) & 0xf);
init.stopbits = LEUART_StopBits2Def((uart_config[dev].mode >> 4) & 0xf);
init.parity = LEUART_Parity2Def((uart_config[dev].mode >> 8) & 0xf);
#endif
LEUART_Init(leuart, &init);
/* configure pin functions */
#ifdef _SILICON_LABS_32B_SERIES_0
leuart->ROUTE = (uart_config[dev].loc |
LEUART_ROUTE_RXPEN |
LEUART_ROUTE_TXPEN);
#else
leuart->ROUTELOC0 = uart_config[dev].loc;
leuart->ROUTEPEN = LEUART_ROUTEPEN_RXPEN | LEUART_ROUTEPEN_TXPEN;
#endif
/* enable receive interrupt */
LEUART_IntEnable(leuart, LEUART_IEN_RXDATAV);
/* enable peripheral */
LEUART_Enable(leuart, leuartEnable);
}
#endif
/* enable the interrupt */
NVIC_ClearPendingIRQ(uart_config[dev].irq);
NVIC_EnableIRQ(uart_config[dev].irq);
return 0;
}
void uart_write(uart_t dev, const uint8_t *data, size_t len)
{
#if LOW_POWER_ENABLED && defined(LEUART_COUNT) && LEUART_COUNT > 0
if (_is_usart(dev)) {
#endif
while (len--) {
USART_Tx(uart_config[dev].dev, *(data++));
}
#if LOW_POWER_ENABLED && defined(LEUART_COUNT) && LEUART_COUNT > 0
} else {
while (len--) {
LEUART_Tx(uart_config[dev].dev, *(data++));
}
}
#endif
}
void uart_poweron(uart_t dev)
{
CMU_ClockEnable(uart_config[dev].cmu, true);
}
void uart_poweroff(uart_t dev)
{
CMU_ClockEnable(uart_config[dev].cmu, false);
}
static void rx_irq(uart_t dev)
{
#if LOW_POWER_ENABLED && defined(LEUART_COUNT) && LEUART_COUNT > 0
if (_is_usart(dev)) {
#endif
if (USART_IntGet(uart_config[dev].dev) & USART_IF_RXDATAV) {
isr_ctx[dev].rx_cb(isr_ctx[dev].arg, USART_RxDataGet(uart_config[dev].dev));
}
#if LOW_POWER_ENABLED && defined(LEUART_COUNT) && LEUART_COUNT > 0
} else {
if (LEUART_IntGet(uart_config[dev].dev) & LEUART_IF_RXDATAV) {
isr_ctx[dev].rx_cb(isr_ctx[dev].arg, LEUART_RxDataGet(uart_config[dev].dev));
}
}
#endif
cortexm_isr_end();
}
#ifdef UART_0_ISR_RX
void UART_0_ISR_RX(void)
{
rx_irq(0);
}
#endif
#ifdef UART_1_ISR_RX
void UART_1_ISR_RX(void)
{
rx_irq(1);
}
#endif
#ifdef UART_2_ISR_RX
void UART_2_ISR_RX(void)
{
rx_irq(2);
}
#endif
#ifdef UART_3_ISR_RX
void UART_3_ISR_RX(void)
{
rx_irq(3);
}
#endif
#ifdef UART_4_ISR_RX
void UART_4_ISR_RX(void)
{
rx_irq(4);
}
#endif